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Example of a time-series model 

*
0 1(1.03) (1 )t

t t tm m mρ ρ ε−= + − +

1. Although the money supply is a continuous variable, (2.2) is a discrete 
difference equation. Since the forcing process {εt} is stochastic, the 
money supply is stochastic; we can call (2.2) a linear stochastic 
difference equation.  

2. If we knew the distribution of {εt}, we could calculate the distribution 
for each element in the {mt} sequence. Since (2.2) shows how the 
realizations of the {mt} sequence are linked across time, we would be 
able to calculate the various joint probabilities. Notice that the 
distribution of the money supply sequence is completely determined by 
the parameters of the difference equation (2.2) and the distribution of 
the {εt} sequence.  

3. Having observed the first t observations in the {mt} sequence, we can 
make forecasts of mt+1, mt+2, ….  

(2.2) 
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White Noise 

• E(εt) = E(εt–1) = … = 0 
 

• E(εt)2 =  E(εt–1) 2 = … = σ2  
 

• [or var(εt) = var(εt–1) = … = σ2] 
 

• E(εt εt-s) = E(εt-j εt-j-s) = 0 for all j and s 
 

• [or cov(εt, εt-s) = cov(εt-j, εt-j-s) = 0] 
 

0

q

t i t i
i

x β ε −
=

= ∑

A sequence formed in this manner is called a moving average of 
order q and is denoted by MA(q) 
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2.  ARMA MODELS 

In the ARMA(p, q) model 
 
yt = a0 + a1yt–1 + … + apyt-p + εt + β1εt–1 + … + βqεt-q 
 
where εt series are serially uncorrelated “shocks” 
 
The particular solution is: 

0
0 1

1
pq

i
it i t i

i i

y a   a Lβ ε −
= =

  
= + −  

   
∑ ∑

Note that all roots must lie outside of the unit circle.  
If this is the case, we have the MA Representation 
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STATIONARITY 

Section 3 
Stationarity Restrictions for an AR(1) Process 

tε
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Covariance Stationary Series 

• Mean is time-invariant 
• Variance is constant 
• All covariances are constant 

– all autocorrelations are constant 
• Example of a series that are not covariance stationary 

– yt = α + β time 
– yt = yt-1 + εt  (Random Walk) 
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Formal Definition 
A stochastic process having a finite mean and variance is 
covariance stationary if for all t and t − s, 
 
1. E(yt) = E(yt-s) = µ   
  
2. E[(yt – µ)2] = E[(yt-s – µ)2] 

 
or [var(yt) = var(yt−s) = ]   
  

3. E[(yt  – µ)(yt-s – µ)] = E[(yt-j – µ)(yt-j-s – µ)] = γs       
 or cov(yt, yt-s) = cov(yt-j, yt-j-s) = γs    
  
where µ,  and γs are all constants. 
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4. STATIONARITY RESTRICTIONS 
FOR AN ARMA(p, q) MODEL 

• Stationarity Restrictions for the Autoregressive 
Coefficients 
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yt = a0 + a1yt–1 + εt with an initial condition 
1 1

0 1 1 0 1
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Only if t is large is this stationary:  
 
 
 
E[(yt – µ)(yt-s – µ)] = E{[εt + a1εt–1 + (a1)2εt–2 + …] 
   [εt-s + a1εt-s–1 + (a1)2εt-s–2 + …]}      
      = σ2(a1)s[1 + (a1)2 + (a1)4 + …] 
       = σ2(a1)s/[1 – (a1)2] 
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Stationarity of an AR(1) Process 
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Restrictions for the AR Coefficients  
0
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We know that the sequence {ci} will eventually solve the difference equation 
  
 ci – a1ci–1 – a2ci–2 – … – apci−p = 0   (2.21) 
 
If the characteristic roots of (2.21) are all inside the unit circle, the {ci} sequence 
will be convergent.  
 
The stability conditions can be stated succinctly: 
1. The homogeneous solution must be zero. Either the sequence must have started 
infinitely far in the past or the process must always be in equilibrium (so that the 
arbitrary constant is zero).  
2. The characteristic root a1 must be less than unity in absolute value. 
 
 



Copyright © 2015 John, Wiley & Sons, Inc. All rights reserved. 

A Pure MA Process 
0
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1. Take the expected value of xt   
  E(xt) = E(εt + β1εt–1 + β2εt–2  +  ) 
           = Eεt + β1Eεt–1 + β2Eεt–2  +  = 0 
                  E(xt−s) = E(εt−s + β1εt−s–1 + β2εt−s–2  +  ) = 0 
 Hence, all elements in the {xt} sequence have the same finite mean (µ = 0).  
 
2. Form var(xt) as 
   var(xt) = E[(εt + β1εt–1 + β2εt–2  +  )2] 
                           = σ2[1 + (β1)2 + (β2)2 +  ] 
  
 As long as Σ(βi)2 is finite, it follows that var(xt) is finite.  
          var(xt−s) = E[(εt−s + β1εt−s–1 + β2εt−s–2  +  )2] 
            = σ2[1 + (β1)2 + (β2)2 +  ] 
  

Thus, var(xt) = var(xt−s) for all t and t−s. 
Are all autocovariances finite and time independent?   

E[xtxt−s] = E[(εt + β1εt–1 + β2εt–2  +  )(εt−s + β1εt−s–1 + β2εt−s–2  +  )] 
                           = σ2(βs + β1βs+1 + β2βs+2 +  ) 
Restricting the sum βs + β1βs+1 + β2βs+2 +  to be finite means that E(xtxt−s) is finite. 
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5. THE AUTOCORRELATION 
FUNCTION  

The Autocorrelation Function of an AR(2) Process 
The Autocorrelation Function of an MA(1) Process 
The Autocorrelation Function of an ARMA(1, 1) Process 
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The Autocorrelation Function of an MA(1) Process   
Consider yt = εt + βεt–1. Again, multiply yt by each yt−s and 
take expectations 
  
γ0 = var(yt) =  Eytyt    = E[(εt + βεt–1)(εt + βεt–1)] = (1 + β2)σ2 
 
γ1 = cov(ytyt–1) = Eytyt–1 = E[(εt + βεt–1)(εt–1 + βεt–2)] = βσ2  
 
and 
 
γs = Eytyt−s = E[(εt + βεt–1)(εt−s + βεt−s–1)] = 0  for all s > 1 
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The ACF of an ARMA(1, 1) Process:  

Let yt = a1yt–1 + εt + β1εt–1.  
 Eytyt   = a1Eyt–1yt + Eεtyt + β1Eεt–1yt       
       
 ⇒  γ0 = a1γ1 + σ2 + β1(a1+β1)σ2 
 
Eytyt–1 = a1Eyt–1yt–1 + Eεtyt–1 + β1Eεt–1yt–1 

      
 ⇒  γ1 = a1γ0 + β1σ2 
 
Eytyt–2 = a1Eyt–1yt–2 + Eεtyt–2 + β1Eεt–1yt–2  
 ⇒  γ2 = a1γ1             .  
Eytyt−s = a1Eyt–1yt−s + Eεtyt−s + β1Eεt–1yt−s  
 ⇒  γs = a1γs–1   
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 Eytyt = a1Eyt–1yt + a2Eyt–2yt + Eεtyt 
Eytyt–1 = a1Eyt–1yt–1 + a2Eyt–2yt–1 + Eεtyt–1 
Eytyt–2 = a1Eyt–1yt–2 + a2Eyt–2yt–2 + Eεtyt–2 
      . 
      . 
Eytyt−s = a1Eyt–1yt−s + a2Eyt–2yt−s + Eεtyt−s 

ACF of an AR(2) Process 

So that 
    γ0 = a1γ1 + a2γ2 + σ2 

    γ1 = a1γ0 + a2γ1              →  ρ1= a1/(1 - a2)  
    γs = a1γs–1 + a2γs–2        →  ρi = a1ρi-1 + a2ρi-2 
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6. THE PARTIAL 
AUTOCORRELATION 
FUNCTION  
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PACF of an AR Process 

yt = a + a1yt-1 + εt 
  
yt = a + a1yt-1 + a2yt-2+ εt 
  
yt = a + a1yt-1 + a2yt-2 + a3yt-3 + εt 
 
… 
 
The successive estimates of the ai are the  
partial autocorrelations 
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PACF of a MA(1) 

yt = εt + β1εt-1 
  
but εt-1 = yt-1 - β1εt-2 
  
yt = εt + β1[ yt-1 - β1εt-2 ] 
  
   =  εt + β1yt-1 – (β1)2 εt-2 
  
yt  =  εt + β1yt-1 – (β1)2[yt-2 - β1εt-3 ] … 
 
It looks like an MA(∞) 
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or Using Lag Operators 

yt = εt + β1εt−1 = (1 + β1L)εt 

yt /(1 + β1L) = εt 

Recall yt/(1 − a1L) = yt + a1yt−1 + a1
2yt−2 + a1

3yt−3 + … 

so that −β1 plays the role of a1  

yt /(1 + β1L)εt = yt /[1 − (−β1)L]εt =  

yt − β1yt−1 + β1
2yt−2 − a1

3yt−3 + … = εt 

or 
yt =β1yt−1 − β1

2yt−2 + β 13yt−3 + … = εt 
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Summary: Autocorrelations and Partial 
Autocorrelations 

ACF 
• AR(1) 

– geometric decay 
• MA(q) 

– cuts off at lag q 

PACF 
• AR(p) 

– Cuts off at lag p 
• MA(1) 

– Geometric Decay 
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For stationary processes, the key points to note are the 
following: 
• 1. The ACF of an ARMA(p,q) process will begin to decay 

after lag q. After lag q, the coefficients of the ACF (i.e., 
the ri) will satisfy the difference equation (ρi = a1ρi–1 + 
a2ρi–2 +  + apρi-p).  
 

• 2. The PACF of an ARMA(p,q) process will begin to 
decay after lag p. After lag p, the coefficients of the PACF 
(i.e., the fss) will mimic the ACF coefficients from the 
model yt /(1 + β1L + β2L2 +  + βqLq).  
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Process ACF PACF 

White Noise All ρs = 0 (s ≠ 0) All φss = 0 

AR(1):  a1 > 0 Direct exponential decay: ρs = 1
sa  φ11 = ρ1; φss = 0 for s ≥ 2 

AR(1):  a1 < 0 Oscillating decay: ρs = 1
sa  φ11 = ρ1; φss = 0 for s ≥ 2 

AR(p) Decays toward zero. Coefficients may oscillate. Spikes through lag p. All φss = 0 for s > p.  

MA(1):  β > 0 Positive spike at lag 1. ρs = 0 for s ≥ 2 Oscillating decay: φ11 > 0. 

MA(1):  β < 0 Negative spike at lag 1. ρs = 0 for s ≥ 2 Geometric decay: φ11 < 0. 

ARMA(1, 1) 
     a1 > 0 

Geometric decay beginning after lag1. Sign ρ1 = 
sign(a1+β) 

Oscillating decay after lag 1. φ11 = ρ1  

ARMA(1, 1) 
     a1 < 0 

Oscillating decay beginning after lag 1. Sign ρ1 = 
sign(a1+β) 

Geometric decay beginning after lag 1. φ11 = ρ1 and 
sign(φss) = sign(φ11). 

ARMA(p, q) Decay (either direct or oscillatory) beginning after 
lag q. 

Decay (either direct or oscillatory) beginning after 
lag p. 

 

TABLE 2.1: Properties of the ACF and PACF 
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Testing the significance of ρi 
• Under the null ρi = 0, the sample distribution of  is: 

– approximately normal (but bounded at -1.0 and +1.0) 
when T is large  

– distributed as a students-t when T is small.  
  
• The standard formula for computing the appropriate t value to 

test significance of a correlation coefficient is: 
 

       with df = T − 2 
 
• SD(ρ) = [ ( 1 – ρ2) / (T – 2) ]1/2 

 
• In reasonably large samples, the test for the null that ρi = 0 is 

simplified to  T1/2. Alternatively, the standard deviation of the 
correlation coefficient is (1/T)0.5.  
 

2
2

ˆ1
ˆi
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ρ

ρ −
−
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Significance Levels 

• A single autocorrelation 
– st.dev(ρ) = [ ( 1 – ρ2) / (T – 2) ] ½ 

• For small ρ and large T, st.dev( ρ ) is 
approx. (1/T)1/2 

– If the autocorrelation exceeds | 2/T1/2 | we can reject the 
null that r = 0. 

• A group of k autocorrelations: 
 
 
 
Is a Chi-square with degrees of freedom = k 

1

( 2) /( )
k

i
i

Q T T T kρ
=

= + −∑
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7. SAMPLE 
AUTOCORRELATIONS 
OF STATIONARY SERIES 

Model Selection Criteria 
Estimation of an AR(1) Model 
Estimation of an ARMA(1, 1) Model 
Estimation of an AR(2) Model 
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Sample Autocorrelations 
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Form the sample autocorrelations 

Test groups of correlations 

If the sample value of Q exceeds the critical value of χ2 with s derees of 
freedom, then at least one value of rk is statistically different from zero at the 
specified significance level.  
 
The Box–Pierce and Ljung–Box Q-statistics also serve as a check to see if 
the residuals from an estimated ARMA(p,q) model behave as a white-noise 
process. However, the degrees of freedom are reduced by the number of 
estimated parameters 
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Model Selection 
•  AIC = T ln(sum of squared residuals) + 2n 
• SBC = T ln(sum of squared residuals) + n ln(T) 
  
where n = number of parameters estimated (p + q + possible 
constant term) T = number of usable observations.  

 
ALTERNATIVE 
• AIC* = –2ln(L)/T + 2n/T 
• SBC* = –2ln(L)/T + n ln(T)/T 
  

• where n and T are as defined above, and L =maximized value 
of the log of the likelihood function. 

• For a normal distribution, –2ln(L) = Tln(2π) +Tln(σ2) + (1/σ2) 
(sum of squared residuals) 
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Figure 2.3: ACF and PACF for two simulated processes
Panel a: ACF for the AR(1) Process
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Panel b: PACF for the AR(1) Process
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Model 1 
yt = a1yt-1 + et 

Model 2 
yt = a1yt-1 + et + b12et-12 

Degrees of Freedom 98 97 
Sum of Squared 
Residuals   

85.10  85.07 

Estimated a1 (standard error) 
0.7904 
(0.0624)  

0.7938 
(0.0643)  

Estimated b 
(standard error) 

   -0.0250  
(0.1141)  

AIC / SBC AIC =  441.9 ; SBC =  444.5 AIC =  443.9 ; SBC =  449.1 
Ljung-Box Q-
statistics for the 
residuals 
(significance level in 
parentheses) 

Q(8)   =          6.43    (0.490)  
Q(16)  =         15.86   (0.391)  
Q(24)  =         21.74   (0.536)  

Q(8)   =          6.48   (0.485)  
Q(16)  =         15.75  (0.400)  
Q(24)  =         21.56. (0.547)  

Table 2.2: Estimates of an AR(1) Model 
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Figure 2.4: ACF of the Residuals from Model 1
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Table 2.3: Estimates of an ARMA(1,1) 
Model 

Estimates Q-Statistics AIC / SBC 
Model 1 a1:   -0.835 (.053) Q(8)  = 26.19 (.000) 

Q(24) = 41.10 (.001) 
AIC = 496.5 
SBC = 499.0 

Model 2 a1:   -0.679 (.076) 
b1:   -0.676 (.081) 

Q(8)  =  3.86 (.695) 
Q(24) = 14.23 (.892)  

AIC = 471.0 
SBC = 476.2 

Model 3 a1:   -1.16  (.093) 
a2:   -0.378 (.092)   

Q(8)  = 11.44  (.057) 
Q(24) = 22.59  (.424) 

AIC = 482.8 
SBC = 487.9 
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ACF of Nonstationary Series 
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8. BOX–JENKINS MODEL 
SELECTION 

Parsimony 
Stationarity and Invertibility 
Goodness of Fit 
Post-Estimation Evaluation 
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Box Jenkins Model Selection 

• Parsimony 
– Extra AR coefficients reduce degrees of freedom by 2 
– Similar processes can be approximated by very 

different models 
– Common Factor Problem 

• yt = εt and yt = 0.5 yt-1 + εt - 0.5εt-1 

– Hence: All t-stats should exceed 2.0 
 

– Model should have a good fit as measured by AIC or 
BIC (SBC) 
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Box-Jenkins II 

• Stationarity and Invertibility 
– t-stats, ACF, Q-stats, … all assume that the process is stationary 
– Be suspicious of implied roots near the unit circle 
– Invertibility implies the model has a finite AR representation. 

• No unit root in MA part of the model 
• Diagnostic Checking 

– Plot residuals—look for outliers, periods of poor fit 
– Residuals should be serially uncorrrelated 

• Examine ACF and PACF of residuals  
– Overfit the model 
– Divide sample into subperiods 
– F = (ssr – ssr1 – ssr2)/(p+q+1) / (ssr1 + ssr2)/(T-2p-2q-2) 
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Residuals Plot 
Deviations from Trend GDP
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What can we learn by plotting the residuals? 
What if there is a systematic pattern in the residuals? 
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Requirements for Box-Jenkins 

• Successful in practice, especially short term 
forecasts  

• Good forecasts generally require at least 50 
observations 
– more with seasonality 

• Most useful for short-term forecasts 
• You need to ‘detrend’ the data. 
• Disadvantages 

– Need to rely on individual judgment 
• However, very different models can provide nearly identical 

forecasts 
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9. PROPERTIES OF 
FORECASTS 

Higher-Order Models 
Forecast Evaluation 
The Granger–Newbold Test 
The Diebold–Mariano Test 
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Forecasting with ARMA Models 

The MA(1) Model 
 yt = β0 + β1εt-1 + εt  
   
Updating 1 period: 
  
yt+1 = β0 + β1εt + εt+1 
  
Hence, the optimal 1-step ahead forecast is: 
 
 Etyt+1 = β0 + β1εt 
 
Note: Etyt+j is a short-hand way to write the conditional expectation of yt+j  
 
The 2-step ahead forecast is: 
 
Etyt+2 = Et[ β0 + β1εt+1 + εt+2 ] = β0 
  
Similarly, the n-step ahead forecasts are all β0 
 



Copyright © 2015 John, Wiley & Sons, Inc. All rights reserved. 

Forecast errors 
 The 1-step ahead forecast error is: 
 
 yt+1 - Etyt+1 =  β0 + β1εt + εt+1 - β0 - β1εt = εt+1  
 
 Hence, the 1-step ahead forecast error is the "unforecastable" portion of yt+1 
  
 The 2-step ahead forecast error is: 
  
 yt+2 - Etyt+2 = β0 + β1εt+1 + εt+2 - β0 = β1εt+1 + εt+2 

 
Forecast error variance 
 The variance of the 1-step ahead forecast error is: var(εt+1) = σ2 
 The variance of the 2-step ahead forecast error is: var(β1εt+1 + εt+2) = (1 + β1

2)σ2 
 
Confidence intervals 
The 95% confidence interval for the 1-step ahead forecast is: 
 β0 + β1εt ± 1.96σ 
 
The 95% confidence interval for the 2-step ahead forecast is: 
 β0 ± 1.96(1 + β1

2)1/2σ 
 
In the general case of an MA(q), the confidence intervals increase up to lag q. 
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The AR(1) Model:  yt = a0 + a1yt-1 + εt.  

Updating 1 period, yt+1 = a0 + a1yt + εt+1, so that  
  
 Etyt+1 = a0 + a1yt [ * ] 
  
The 2-step ahead forecast is: 
 Etyt+2 = a0 + a1Etyt+1 
 and using [ * ] 
 Etyt+2 = a0 + a0a1 + a1

2yt 
 
It should not take too much effort to convince yourself that: 
 Etyt+3 = a0 + a0a1 + a0a1

2 + a1
3yt 

 
and in general:  
 
Etyt+j = a0[ 1 + a1 + a1

2 + ... + a1
j-1 ] + a1

jyt  
  
If we take the limit of Etyt+j we find that Etyt+j = a0/(1 - a1).  This result is really 
quite general; for any stationary ARMA model, the conditional forecast of yt+j converges to the unconditional mean. 
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Forecast errors 
The 1-step ahead forecast error is: 
 yt+1 – Etyt+1 = a0 + a1yt + εt+1 - a0 - a1yt = εt+1 
 
The 2-step ahead forecast error is: yt+2 - Etyt+2.  Since yt+2 = a0 + a1a0 + a1

2yt + 
εt+2 + a1εt+1 and Etyt+2 =  a0 + a1a0 + a1

2yt , it follows that: 
 
 yt+2 - Etyt+2 = εt+2 + a1εt+1 
  
Continuing is this fashion, the j-step ahead forecast error is : 
 yt+j - Etyt+j = εt+j + a1εt+j-1 + a1

2εt+j-2 + a1
3εt+j-3 + ... + a1

j-1εt+1  
 
Forecast error variance: The j-step ahead forecast error variance is: 
 σ2[ 1 + a1

2 + a1
4 + a1

6 + ... + a1
2(j-1) ] 

 
The variance of the forecast error is an increasing function of j.  As such, you 
can have more confidence in short-term forecasts than in long-term forecasts. 
In the limit the forecast error variance converges to σ2/(1-a1

2); hence, the 
forecast error variance converges to the unconditional variance of the {yt} 
sequence.   
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Confidence intervals 
 

• The 95% confidence interval for the 1-step ahead forecast 
is: 

  
 a0 + a1yt ± 1.96σ 
  
• Thus, the 95% confidence interval for the 2-step ahead 

forecast is:  
 a0(1+a1) + a1

2yt ± 1.96σ(1+a1
2)1/2. 
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Forecast Evaluation 
• Out-of-sample Forecasts: 

1. Hold back a portion of the observations from the estimation process 
and estimate the alternative models over the shortened span of data. 
2. Use these estimates to forecast the observations of the holdback 
period.  
3. Compare the properties of the forecast errors from the two models.  

• Example:  
1. If {yt} contains a total of 150 observations, use the first 100 
observations to estimate an AR(1) and an MA(1) and use each to 
forecast the value of y101. Construct the forecast error obtained from the 
AR(1) and from the MA(1).   
2. Reestimate an AR(1) and an MA(1) model using the first 101 
observations and construct two more forecast errors.  
3. Continue this process so as to obtain two series of one-step ahead 
forecast errors, each containing 50 observations.  
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• A regression based method to assess the forecasts is to use the 50 
forecasts from the AR(1) to estimate an equation of the form 

   y100+t = a0 + a1f1t + v1t   
• If the forecasts are unbiased, an F-test should allow you to impose the 

restriction a0 = 0 and a1 = 1. Repeat the process with the forecasts from 
the MA(1). In particular, use the 50 forecasts from the MA(1) to 
estimate 

   y100+t = b0 + b1f2t + v2t t = 1, … , 50 
• If the significance levels from the two F-tests are similar, you might 

select the model with the smallest residual variance; that is, select the 
AR(1) if var(v1t) < var(v2t).  

  
• Instead of using a regression-based approach, many researchers would 

select the model with the smallest mean square prediction error 
(MSPE). If there are H observations in the holdback periods, the 
MSPE for the AR(1) can be calculated as 

 
1

2

1

1
i

H

i
MSPE e

H =

= ∑
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The Diebold–Mariano Test 

Let the loss from a forecast error in period i be denoted by g(ei). In the 
typical case of mean-squared errors, the loss is et

2 
 

We can write the differential loss in period i from using model 1 versus 
model 2 as di = g(e1i) – g(e2i). The mean loss can be obtained as  
 

ie

  

[ ]1 2
1

1 ( ) ( )
H

i i
i

d g e g e
H =

= −∑

If the {di} series is serially uncorrelated with a sample variance of γ0, the 
estimate of var(𝑑̅ ) is simply γ0/(H − 1). The expression 

 
 
 
 
has a t-distribution with H − 1 degrees of freedom  

0/ /( 1)d Hγ −



Copyright © 2015 John, Wiley & Sons, Inc. All rights reserved. 

10. A MODEL OF THE 
INTEREST RATE SPREAD 

Out-of-Sample Forecasts 
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Figure 2.6: ACF and PACF of the Spread
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  AR(7) 
  

AR(6) 
  

AR(2) 
  

p = 1, 2, 
and 7 

ARMA(1, 1) ARMA(2, 1) p = 2 
ma = (1, 7) 

µy 1.20 1.20 1.19 1.19 1.19 1.19 1.20 
  (6.57) (7.55) (6.02) (6.80) (6.16) (5.56) (5.74) 
a1 1.11 1.09 1.05 1.04 0.76 0.43 0.36 
  (15.76) (15.54) (15.25) (14.83) (14.69) (2.78) (3.15) 
a2 -0.45 -0.43 -0.22 -0.20   0.31 0.38 
  (-4.33) (-4.11) (-3.18) (-2.80)   (2.19) (3.52) 
a3 0.40 0.36           
  (3.68) (3.39)           
a4 -0.30 -0.25           
  (-2.70) (-2.30)           
a5 0.22 0.16           
  (2.02) (1.53)           
a6 -0.30 -0.15           
  (-2.86) (-2.11)           
a7 0.14     -0.03       
  (1.93)     (-0.77)       
β1         0.38 0.69 0.77 
          (5.23) (5.65) (9.62) 
β7             -0.14 
              (-3.27) 
                
SSR 43.86 44.68 48.02 47.87 46.93 45.76 43.72 
AIC 791.10 792.92 799.67 801.06 794.96 791.81 784.46 
SBC 817.68 816.18 809.63 814.35 804.93 805.10 801.07 
                
Q(4) 0.18 0.29 8.99 8.56 6.63 1.18 0.76 
Q(8) 5.69 10.93 21.74 22.39 18.48 12.27 2.60 
Q(12) 13.67 16.75 29.37 29.16 24.38 19.14 11.13 

Table 2.4: Estimates of the Interest Rate Spread 
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11. SEASONALITY 

Models of Seasonal Data 
Seasonal Differencing 
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Seasonality in the Box-Jenkins framework 

• Seasonal AR coefficients 
– yt = a1yt-1+a12yt-12 + a13yt-13 
– yt = a1yt-1+a12yt-12 + a1a12yt-13 
– (1 – a1L)(1 – a12L12)yt 

 
• Seasonal MA Coefficients 

 
• Seasonal differencing: 

–  ∆yt = yt – yt-1 versus ∆12yt = yt – yt-12  
• NOTE: You do not difference 12 times 

– In RATS you can use: dif(sdiffs=1) y / sdy 
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Figure 2.8: ACF and PACF

Panel a: M1 Growth
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Model 1: AR(1) with Seasonal MA 
  
 mt = a0 + a1mt–1 + εt + β4εt–4  
 
Model 2: Multiplicative Autoregressive 
 
 mt = a0 + (1 + a1L)(1 + a4L4)mt–1 + εt    
 
Model 3: Multiplicative Moving Average 
 

 mt = a0 + (1 + β1L)(1 + β4L4)εt    

Three Models of Money growth 
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Model 1 Model 2 Model 3 
a1 0.541 

(8.59) 

0.496 
(7.66) 

  

a4   −0.476 
(−7.28) 

  

β1     0.453 
(6.84) 

β4 −0.759 
(−15.11) 

  −0.751 
(−14.87) 

SSR 0.0177 0.0214 0.0193 
AIC 
SBC 

−735.9 
−726.2 

−701.3 
−691.7 

−720.1 
−710.4 

Q(4) 
Q(8) 
Q(12) 

  1.39  (0.845) 
  6.34  (0.609) 
14.34  (0.279) 

  3.97   (0.410) 
24.21  (0.002) 
32.75  (0.001) 

22.19  (0.000) 
30.41  (0.000) 
42.55  (0.000) 

Table 2.5 Three Models of Money Growth 
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Figure 2.9: Forecasts of M1

M1 in Billions Forecasts
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12. PARAMETER INSTABILITY 
AND STRUCTURAL CHANGE 

Testing for Structural Change 
Endogenous Breaks 
Parameter Instability 
An Example of a Break 
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Parameter Instability and the CUSUMs 
• Brown, Durbin and Evans (1975) calculate whether the cumulated sum of the 

forecast errors is statistically different from zero. Define: 
     
     N = n, …, T − 1 
 
n = date of the first forecast error you constructed, σe is the estimated 
standard deviation of the forecast errors.  
 
Example: With 150 total observations (T = 150), if you start the procedure 
using the first 10 observations (n = 10), 140 forecast errors (T − n) can be 
created. Note thatσe is created using all T – n forecast errors.  
 
To create CUSUM10, use the first ten observations to create e10(1)/σe. Now 
let N = 11 and create CUSUM11 as [e10(1)+e11(1)]/σe. Similarly, CUSUMT-1 = 
[e10(1)+…+eT-1(1)]/σe.  
 
If you use the 5% significance level, the plot value of each value of 
CUSUMN should be within a band of approximately ± 0.948 [ (T − n)0.5 + 
2(N – n) (T − n)-0.5 ].  

 

(1) /
N

N i e
i n

CUSUM e σ
=

= ∑
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Figure 2.10: Recursive Estimation of the Model
Panel 1:  The Series
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COMBINING FORECASTS 
Section 13 
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13 Combining Forecasts 

Consider the composite forecast fct constructed as weighted average of the 
individual forecasts  
 fct = w1f1t + w2f2t  +  + wnfnt    (2.71) 
 
and ∑𝑤𝑖 = 1 
 
If the forecasts are unbiased (so that Et−1fit = yt), it follows that the 
composite forecast is also unbiased:  
 
Et−1fct = w1Et-1f1t + w2Et−1f2t +  + wnEt−1fnt 
          = w1yt + w2yt +  + wnyt = yt 
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A Simple Example 
To keep the notation simple, let n = 2.  
 
Subtract yt from each side of (2.71) to obtain  
 
fct − yt = w1(f1t − yt) + (1 − w1)(f2t − yt) 
  
Now let e1t and e2t denote the series containing the one-step-ahead forecast errors 
from models 1 and 2 (i.e., eit = yt − fit) and let ect be the composite forecast error. 
As such, we can write 
 
ect = w1e1t + (1 − w1)e2t 
  
The variance of the composite forecast error is 
    
var(ect) = w1

2var(e1t) + (1 − w1)2var(e2t) + 2w1(1 − w1)cov(e1te2t)     (2.72) 
 
Suppose that the forecast error variances are the same size and that cov(e1te2t) 
=0. If you take a simple average by setting w1 = 0.5, (2.72) indicates that the 
variance of the composite forecast is 25% of the variances of either forecast: 
var(ect) = 0.25var(e1t) = 0.25var(e2t).  
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Optimal Weights 

1 1 1 2 1 1 2
1

var( ) 2 var( ) 2(1 ) var( ) 2(1 2 )cov( )ct
t t t t

e w e w e w e e
w

δ
δ

= − − + −

var(ect) = (w1)2var(e1t) + (1 − w1)2var(e2t) + 2w1(1 − w1)cov(e1te2t) 

Select the weight w1 so as to minimize var(ect): 

1
* 2 1
1 1 1

1 2 1 2

var( ) var( )
var( ) var( ) var( ) var( )

t t

t t t t

e ew
e e e e

−

− −= =
+ +

1
* 1

1 1 1
1 2

var( )
var( ) var( ) ... var( )

t
n

t t nt

ew
e e e

−

− − −=
+ + +

In the n-variable case: 

Bates and Granger (1969), recommend constructing the weights 
excluding the covariance terms.  
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Alternative methods 
Consider the regression equation  

yt = α0 + α1f1t + α2f2t +  + αnfnt + vt (2.75) 

 
It is also possible to force α0 = 0 and α1 + α2 +  + αn = 1.  
Under these conditions, the αi’s would have the direct 
interpretation of optimal weights.  

Here, an estimated weight may be negative. Some researchers 
would reestimate the regression without the forecast 
associated with the most negative coefficient.  

 
Granger and Ramanathan recommend the inclusion of an intercept 
to account for any bias and to leave the αi’s unconstrained.  
 
As surveyed in Clemen (1989), not all researchers agree with the 
Granger–Ramanathan recommendation and a substantial amount 
of work has been conducted so as to obtain optimal weights.  
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The SBC 
Let SBCi be the SBC from model i and let SBC* be the SBC from the 
best fitting model.  

Form αi = exp[(SBC* − SBCi)/2] and then construct the weights 

*

1

/
n

i i i
t

w α α
=

= ∑

Since exp(0) = 1, the model with the best fit has the weight 1/Σαi. Since 
αi is decreasing in the value of SBCi, models with a poor fit with have 
smaller weights than models with large values of the SBC.  
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Example of the Spread 

  AR(7) AR(6) AR(2) AR(||1,2,7||) ARMA(1,1) ARMA(2,1) ARMA(2,||1,7||) 
fi2013:1 0.775 0.775 0.709 0.687 0.729 0.725 0.799 

I estimated seven different ARMA models of the interest rate spread. The data 
ends in April 2012 and if I use each of the seven models to make a one-step-
ahead forecast for January 2013: 

Simple averaging of the individual forecasts results in a combined forecast of 0.743.  
 
Construct 50 1-step-ahead out-of-sample forecasts for each model so as to obtain 

   AR(7) AR(6) AR(2) AR(||1,2,7||) ARMA(1,1
) 

ARMA(2,1) ARMA(2,||1,7||) 

var(eit) 0.635 0.618 0.583 0.587 0.582 0.600 0.606 
wi 0.135 0.139 0.147 0.146 0.148 0.143 0.141 
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Next, use the spread (st) to estimate a regression in the form of (5). If you 
omit the intercept and constrain the weights to unity, you should obtain:  

 st = 0.55f1t – 0.25f2t −2.37f3t + 2.44f4t + 0.84f5t – 0.28f6t + 1.17f7t  (6) 

Although some researchers would include the negative weights in (6), most 
would eliminate those that are negative. If you successively reestimate the 
model by eliminating the forecast with the most negative coefficient, you 
should obtain: 

st =  0.326f4t + 0.170f5t + 0.504f7t 

The composite forecast using the regression method is: 

 0.326(0.687) + 0.170(0.729) + 0.504(0.799) = 0.751. 

If you use the values of the SBC as weights, you should obtain: 

  AR(7) AR(6) AR(2) AR(||1,2,7||) ARMA(1,1) ARMA(2,1) ARMA(2,||1,7||) 
wi 0.000 0.000 0.011 0.001 0.112 0.103 0.773 

The composite forecast using SBC weights is 0.782. In actuality, the spread in 2013:1 turned 
out to be 0.74 (the actual data contains only two decimal places). Of the four methods, simple 
averaging and weighting by the forecast error variances did quite well. In this instance, the 
regression method and constructing the weights using the SBC provided the worst composite 
forecasts.  
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APPENDIX 2.1: ML ESTIMATION OF A REGRESSION 
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ML ESTIMATION OF AN MA(1) 
Now let yt = βεt–1 + εt. The problem is to construct 
the {εt} sequence from the observed values of 
{yt}. If we knew the true value of β and knew that 
ε0 = 0, we could construct ε1, … , εT  recursively. 
Given that ε0 = 0, it follows that: 
 ε1 = y1 
 ε2 = y2 – βε1 = y2 – βy1 
 ε3 = y3 – βε2 = y3 – β (y2 – βy1 ) 
         ε4 = y4 – βε3 = y4 – β [y3 – β (y2 – βy1 ) ] 
In general, εt = yt – βεt–1 so that if L is the lag 
operator 
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