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Section 1

STOCHASTIC DIFFERENCE
EQUATION MODELS




Example of a time-series model

m, = p(1.03)'m, + (1- p)m,_, +&, (2.2)

. Although the money supply is a continuous variable, (2.2) is a discrete
difference equation. Since the forcing process {&} is stochastic, the
money supply is stochastic; we can call (2.2) a linear stochastic
difference equation.

If we knew the distribution of {&}, we could calculate the distribution
for each element in the {m,} sequence. Since (2.2) shows how the
realizations of the {m,} sequence are linked across time, we would be
able to calculate the various joint probabilities. Notice that the
distribution of the money supply sequence is completely determined by
the parameters of the difference equation (2.2) and the distribution of
the {&} sequence.

Having observed the first t observations in the {m.} sequence, we can
make forecasts of m,,,, m,,,, ....
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White Noise

* BE(&) =E(§4)=...=0
* E(&)°= E(g4)=...=07
e [orvar(g) =var(g_,) = ... = 7]

E(s &.5) = E(& &4.5) =0 forall jand s
¢ [or cov(&, &) = COV(&;, ) = O]

g
X = Z L&
i—0

A sequence formed in this manner is called a moving average of
order g and is denoted by MA(Q)
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2. ARMA MODELS

In the ARMA(p, g) model

Vi@t Ayt Ayt gt fisgat .t fiag

where & series are serially uncorrelated “shocks”

The particular solution is:

NN

Note that all roots must lie outside of the unit circle.
If this is the case, we have the MA Representation
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Section 3
Stationarity Restrictions for an AR(1) Process

STATIONARITY

Copyright © 2015 John, Wiley & Sons, Inc. All rights reserved.



[ [ | [ [ 1 [ |
1 2 3 45 6 7 8 9 10112131415 16 17 18 19 20

Hour

FIGURE 2.1 Hourly Output of Four Machines
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Covarlance Stationary Series

e Mean Is time-invariant
e \ariance Is constant
* All covariances are constant

—all autocorrelations are constant
e Example of a series that are not covariance stationary

—Y,= a+ Btime
—V¥; = VY1 + & (Random Walk)
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Formal Definition

A stochastic process having a finite mean and variance is
covariance stationary if for all tand t —s,

1 E(y) = E(yy.) = p

or [var(y,) = var(y, ) =]

3. E[(yy — 190(Ves— £9] = E[(Yyj — ) Vejs — £9] = 7
Or COV(Yy, Yis) = COV(Yejs Yejus) = 75

where g, and y, are all constants.
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4. STATIONARITY RESTRICTIONS
FOR AN ARMA(p, q) MODEL

« Stationarity Restrictions for the Autoregressive
Coefficients
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Stationarity of an AR(1) Process

Y, = ag + Y1 T & With an initial condition
= t1

Yi = 6102:5‘1I +a Y, +Zallgt—i
i=0 =0

Only if tis large is this stationary:

. a, i
limy, :1 +Zalgt—i

E[(y,— )(Yes — )] = E{lg + a1, + (@), + ...]
[es ¥ Q1851 + (Q1)°Gs 0 + -]}
= o%(@)’[1 + (ap)? + (a)* + ...]
= o%(a,)/[1 - (a,)“]
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Restrictions for the AR Coefficients
Let vy, :ao+iz_::aiyti + &,

p o0
so that y, = a, /{1—Zai}+ D cie
i=1 i=0

We know that the sequence {c;} will eventually solve the difference equation

Ci— aCi g —aCip— ... —a,Ci_, =0 (2.21)

If the characteristic roots of (2.21) are all inside the unit circle, the {c;} sequence
will be convergent.

The stability conditions can be stated succinctly:
1. The homogeneous solution must be zero. Either the sequence must have started

infinitely far in the past or the process must always be in equilibrium (so that the

arbitrary constant is zero).
2. The characteristic root a, must be less than unity in absolute value.
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A Pure MA Process x=Y s,

1. Take the expected value of x;
E(x) =E(g+ &1t o&io )
=B+ fEa + fEg, + =0

E(Xt—s) = E(‘Et—s + ﬂlgt—s—l + :82‘9t—5—2 + ) =0
Hence, all elements in the {x;} sequence have the same finite mean (« = 0).

2. Form var(x,) as

var(x) = E[(& + fiay + fosio + )]
= L+ (B + (B + ]

As long as 2(/3)? is finite, it follows that var(x,) is finite.
Var(xt—s) = E[(gt—s + ﬂlgt—s—l + ﬂth—s—Z + )2]
=[1+ (B + (B + ]

Thus, var(x,) = var(x,_) for all t and ¢—s.
Are all autocovariances finite and time independent?

Elxx,_] =El(& + pr&q * Bogia + Nés t Brg—sat oty + )]
= Gz(ﬂs + 181188+1 + 182188+2 + )

Restricting the sum g, + £, 5.1 + Bofp + 10 be finite means that E(xx,_,) is finite.
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The Autocorrelation Function of an AR(2) Process
The Autocorrelation Function of an MA(1) Process
The Autocorrelation Function of an ARMA(1, 1) Process

5. THEAUTOCORRELATION
FUNCTION
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The Autocorrelation Function of an MA(1) Process

Consider y, = & + Pe_,. Again, multiply y, by each y, . and
take expectations

%o =var(y) = Byy, =El(&+ fer)(a+ Pa)] =1+ fF)o
7 = cov(Yye) = Byye = El(g + Ba (e + Ba,)] = o

and

Ys = Eytyt—s = E[(gt t ﬁgt—l)(gt—s t ﬁgt—s—l)] =0 for a” s>1
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The ACF of an ARMA(1, 1) Process:

Lety,=a)y, + &+ fr&.
Eyy: =aiEy. Y+ E&y, + biE& 1Y,

= p=qnt o+ p(atp)o
EYYia = aiEYiaYia t E&Yia + BiES 1Yia
= n=aptpio
EYYio = aiEYiaYio t E&Yio + BiES 1Yo
= 2= un

Eytyt—s = alEyt—lyt—S t Egtyt—s T /BlEgt—lyt—S
= Ys = 105
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ACF of an AR(2) Process

Eyyy: = a1y Yy + aEY LY, + E&Y,
Eyyea = aiBY Yo T aky oy T Eay
By, = aiBY Yo t kY Yo T Egyis

By = 1By 1Y, T By oY s T E&Y

So that
= ta,t o
n=ahtan — p=a/(l-ay)
Yo = 1)1 T Qo) = A= 0T 00
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6. THE PARTIAL
AUTOCORRELATION
FUNCTION
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PACF of an AR Process

Yyi=atay, T &g
Yi=atay, Tay.,t g

Yi=atay,, Tay,Tay ;T g

The successive estimates of the a, are the
partial autocorrelations
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PACF of a MA(1)

Yi = &+ P&y
but &, =V, - B
Y= &+ Bil Y1 - &
= &+ fyu— (B) &
Y = &+ B~ (B) Do - Bi&s] -

It looks like an MA()
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or Using Lag Operators

Y=t pga=1+pL)g

y /(1 + L) =&

Recall y/(1 —a,L) =y, +ay, ; + %, , +asy, s+ ...
so that —£, plays the role of a,

y /(1 + pil)e =y /[1 - (=p)Ll& =

Ye— A1t BV~ st = 4

or

Vi =BYi1— BiVeo T B1Yest o= &
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Summary: Autocorrelations and Partial
Autocorrelations

ACF PACF

« AR(1) * AR(p)
— Cuts off at lag p

— geometric decay
« MA(Q) « MA(Q)

_ cuts off at lag g — Geometric Decay
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For stationary processes, the key points to note are the
following:

e 1. The ACF of an ARMA(p,q) process will begin to decay
after lag g. After lag q, the coefficients of the ACF (i.e.,
the r;) will satisfy the difference equation (p, = a0, ; +

A0i7 + appi-p)'

e 2. The PACF of an ARMA(p,q) process will begin to
decay after lag p. After lag p, the coefficients of the PACF
(1.e., the f..) will mimic the ACF coefficients from the
model y, /(1 + gL + B,L2 + + S LI9).
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TABLE 2.1: Properties of the ACF and PACF

Process ACF PACF

White Noise All p;=0(s#0) All ¢s=0

AR(1): a1 >0 Direct exponential decay: ps = a’ d1 = p1; s =0fors>2

AR(1): a1 <0 Oscillating decay: o = a ¢1 = pr; ¢ =0 fors>2

AR(p) Decays toward zero. Coefficients may oscillate. Spikes through lag p. All ¢s =0 fors >p.

MA(1): >0 Positive spike at lag 1. ps=0fors>2 Oscillating decay: ¢ > 0.

MA(1): <0 Negative spike at lag 1. ps=0fors>2 Geometric decay: ¢ <0.

ARMA(1, 1) Geometric decay beginning after lagl. Sign p, = Oscillating decay after lag 1. ¢11 = o1
a1>0 sign(a;+p)

ARMA(L, 1) Oscillating decay beginning after lag 1. Sign p; = Geometric decay beginning after lag 1. ¢1; = o, and
a1<0 sign(as+p) sign(ds) = sign( ).

ARMA(p, q) Decay (either direct or oscillatory) beginning after Decay (either direct or oscillatory) beginning after

lag g.

lag p.
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Testing the significance of p

e Under the null p, = 0, the sample distribution of Is:

— approximately normal (but bounded at -1.0 and +1.0)
when T is large
— distributed as a students-t when T is small.

 The standard formula for computing the appropriate t value to
test significance of a correlation coefficient is:

t=4, /133 with df = T - 2

* SD(p)=[(1-p) I (T-2) ]

* Inreasonably lar 9e samples, the test for the null that p;, =0 Is
simplified to T2, Alternatlvelgl5 the standard deviation of the

correlation coefficient is (1/T)
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Significance Levels

« Asingle autocorrelation
—st.dev(p) =[(1-A) [ (T-2)]*
* For small p and large T, st.dev( p) Is
approx. (1/T)2

| — If the autocorrelation exceeds | 2/TY2| we can reject the
null that r = 0.

« Agroup of k autocorrelations:

Q=TT +2)Yp (T K

Is a Chi-square with degrees of freedom =k

Copyright © 2015 John, Wiley & Sons, Inc. All rights reserved.



Model Selection Criteria

Estimation of an AR(1) Model
Estimation of an ARMA(1, 1) Model
Estimation of an AR(2) Model

7. SAMPLE
AUTOCORRELATIONS
OF STATIONARY SERIES
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Sample Autocorrelations

DN -Y)

_ t=s+1

s =

Form the sample autocorrelations

.
Z(yt o V)Z
t=1
Q=T(T+2)D rZ/(T —k) Test groups of correlations
k=1

If the sample value of Q exceeds the critical value of »? with s derees of
freedom, then at least one value of r, is statistically different from zero at the

specified significance level.

The Box—Pierce and Ljung-Box Q-statistics also serve as a check to see if
the residuals from an estimated ARMA(p,q) model behave as a white-noise
process. However, the degrees of freedom are reduced by the number of

estimated parameters
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Model Selection

 AIC =T In(sum of squared residuals) + 2n
« SBC =T In(sum of squared residuals) + n In(T)

where n = number of parameters estimated (p + ¢ + possible
constant term) T = number of usable observations.

ALTERNATIVE
AIC™ ==2In(L)/T + 2n/T
e SBC*=-2In(L)/T +nIn(T)/T

* where nand T are as defined above, and L =maximized value
of the log of the likelihood function.

« For a normal distribution, =2In(L) = TIn(2x) +TIn(¢?) + (1/62)
(sum of squared residuals)
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Figure 2.3: ACF and PACF for two simulated processes
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Panel b: PACF for the AR(1) Process
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Panel d: PACF for the ARM1(1,1) Process
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Table 2.2: Estimates of an AR(1) Model

Degrees of Freedom

Sum of Squared
Residuals

Estimated a,
(standard error)

Estimated b
(standard error)

AIC/SBC

Ljung-Box Q-
statistics for the
residuals _
(significance level in
parentheses)

Model 1
Yi = 1Y T &
98
85.10
0.7904
(0.0624)

AIC = 441.9;SBC = 4445

8) = 6.43 (0.490
16) = 15.86 (0.39
ST L

21.74 (0.536

Model 2
Ve =Yg + €+ D€,

97

85.07

0.7938

(0.0643)

-0.0250

(0.1141)

AIC = 443.9:SBC = 449.1
8) =  6.48 (0.485
16) = 15.75 (0.40
24) = 21.56. (0.547
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Figure 2.4: ACF of the Residuals from Model 1

Copyright © 2015 John, Wiley & Sons, Inc. All rights reserved.



Table 2.3: Estimates of an ARMA(1,1)
Model

Estimates Q-Statistics AIC / SBC

Model 1  a;: -0.835(.053) Q(8) =26.19(.000)  AIC=496.5
Q(24) =41.10 (.001)  SBC=499.0

Model 2 a,;: -0.679(.076) Q(8) = 3.86 (.695) AIC = 471.0
b,: -0.676 (.081) Q(24)=14.23(.892)  SBC=476.2

Model3  a;: -1.16 (.093) Q(8) =11.44 (.057)  AIC=482.8
a,: -0.378(.092) Q(24)=22.59 (.424) SBC=487.9
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ACF of Nonstationary Series

0 Differences
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Parsimony

Stationarity and Invertibility
Goodness of Fit
Post-Estimation Evaluation

8. BOX-JENKINS MODEL
SELECTION
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Box Jenkins Model Selection

e Parsimony
— Extra AR coefficients reduce degrees of freedom by 2

— Similar processes can be approximated by very
different models

— Common Factor Problem
*y,=¢gandy, =05y, +¢-0.5¢
— Hence: All t-stats should exceed 2.0

— Model should have a good fit as measured by AIC or
BIC (SBC)
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Box-Jenkins |l

Stationarity and Invertibility
— t-stats, ACF, Q-stats, ... all assume that the process is stationary
— Be suspicious of implied roots near the unit circle
— Invertibility implies the model has a finite AR representation.
* No unit root in MA part of the model
Diagnostic Checking
— Plot residuals—Ilook for outliers, periods of poor fit
— Residuals should be serially uncorrrelated
« Examine ACF and PACF of residuals
— Overfit the model
— Divide sample into subperiods
— F = (ssr—ssr, — ssr,)/(p+q+1) / (ssry + ssr,)/(T-2p-29-2)
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Residuals Plot

Deviations from Trend GDP
1500

1250 —

1000 —

750 —

500 —

250 —

-250 —

-500 —

-750

What can we learn by plotting the residuals?
What if there is a systematic pattern in the residuals?
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Requirements for Box-Jenkins

Successful In practice, especially short term
forecasts

Good forecasts generally require at least 50
observations

— more with seasonality
Most useful for short-term forecasts

You need to ‘detrend’ the data.
Disadvantages

— Need to rely on individual judgment

* However, very different models can provide nearly identical
forecasts
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Higher-Order Models
Forecast Evaluation

The Granger—Newbold Test
The Diebold—Mariano Test

9. PROPERTIES OF
FORECASTS
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Forecasting with ARMA Models

The MA(1) Model
Y= Bo t Bigy t &

Updating 1 period:
Yier = Bo + Pi& t+ &g
Hence, the optimal 1-step ahead forecast is:
EYit = Bo Bty
Note: E\y,,; Is a short-hand way to write the conditional expectation of y,,;
The 2-step ahead forecast is:

EYuo = Ed By + Bigus + €ua 1 = Bo

Similarly, the n-step ahead forecasts are all 3,

Copyright © 2015 John, Wiley & Sons, Inc. All rights reserved.



Forecast errors
The 1-step ahead forecast error is:

Yerr = EYer = Po + Pr& t+ &g - Bo - Pr& = &g
Hence, the 1-step ahead forecast error is the "unforecastable” portion of y,,,
The 2-step ahead forecast error is:
Yirz = EYe2 = Bo + Bigua + €2 - Bo = Bigg t+ 10
Forecast error variance
The variance of the 1-step ahead forecast error is: var(e,,,) = 62

The variance of the 2-step ahead forecast error is: var(B,e,,, + €.,) = (1 + p,?)c?

Confidence intervals

 The 95% confidence interval for the 1-step ahead forecast is:

By + Bg, £ 1.96G

The 95% confidence interval for the 2-step ahead forecast is:
B, £ 1.96(1 + B,9)Y%c

In the general case of an MA(Qq), the confidence intervals increase up to lag q.
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he AR(1) Model: y,=a, +a,y,, * &

Updating 1 period, y,,, = a, + a,y, + &4, SO that

EYui =8 tay, [*]

The 2-step ahead forecast is:

EYu, =8yt Ey,
and using [ * ]

_ 2
EYiu, =8+ 853 +a,%y,

It should not take too much effort to convince yourself that:
EYus =8 T 303 + 853" +a%y,

and in general:
— 2 -1 j
Eyuj=all+a tas+..+alt]+aly,

If we take the limit of Ey,,. we find that E\y,.. = a,/(1 - a,).. This result is really
quite general; for any s_fat’u‘onary ARMA nfodkl, tRe conditional forecast of Yie]
converges to the unconditional mean.
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Forecast errors
The 1-step ahead forecast error is:

yt+1 — Etyt+1 = aO t alyt + 8t+1 - aO - alyt = 8t+1

The 2-step ahead forecast error is: Vi - Sincey,,, = a, + a,a, + a,%y, +
€ T A€ AN EY,,, = 8yt a8, + yt , |t IIEFoIIows that:

+a

Yero = EYro = € T 218144

Continuing is this fashion, the j-step ahead forecast error is :
- — 2 3 j-1
Yij Etyt+j = €t Ay T A€, T AEL 5 T T ATE

Forecast error variance: The j-step ahead forecast error variance is:
of[l+a’+a*+al+..+a20D]

The variance of the forecast error is an increasing function of j. As such, you
can have more confidence in short-term forecasts than in long-term forecasts.
In the limit the forecast error variance converges to ¢%/(1-a,%); hence, the
forecast error variance converges to the unconditional variance of the iyt
sequence.
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Confidence intervals

* The 95% confidence interval for the 1-step ahead forecast
IS:

a, + a,y, = 1.960

e Thus, the 95% confidence interval for the 2-step ahead
| forecast Is:

as(1+a,) + a,%y, + 1.960(1+a,2)%2.
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Forecast Evaluation

e Out-of-sample Forecasts:

1. Hold back a portion of the observations from the estimation process
and estimate the alternative models over the shortened span of data.

2. Use these estimates to forecast the observations of the holdback

period.

3. Compare the properties of the forecast errors from the two models.
|l « Example:
| \ 1. If {y,} contains a total of 150 observations, use the first 100

observations to estimate an AR(1) and an MA(1) and use each to
forecast the value of y,,;,. Construct the forecast error obtained from the
AR(1) and from the MA(1).

2. Reestimate an AR(1) and an MA(1) model using the first 101
observations and construct two more forecast errors.

3. Continue this process so as to obtain two series of one-step ahead
forecast errors, each containing 50 observations.

Copyright © 2015 John, Wiley & Sons, Inc. All rights reserved.



A regression based method to assess the forecasts is to use the 50
forecasts from the AR(1) to estimate an equation of the form

Y100+t = g * yfy; + Vi
If the forecasts are unbiased, an F-test should allow you to impose the
restriction a, = 0 and a, = 1. Repeat the process with the forecasts from
the MA(2). In particular, use the 50 forecasts from the MA(1) to
estimate

Y100+t = Do + 01fp + vy t=1,...,50

If the significance levels from the two F-tests are similar, you might
select the model with the smallest residual variance; that is, select the
AR(1) if var(vy,) < var(vs,,).

Instead of using a regression-based approach, many researchers would
select the model with the smallest mean square prediction error
(MSPE). If there are H observations in the holdback periods, the
MSPE for the AR(1) can be calculated as

1 H
MSPE == ¢’
H = 1i
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The Diebold—Mariano Test

Let the loss from a forecast error in period i be denoted by g(e;). In the
typical case of mean-squared errors, the loss is e/

We can write the differential loss in period i from using model 1 versus
model 2 as d; = g(ey;) — 9(e,;). The mean loss can be obtained as

a:%i[g(eli)_ g(eZi)]

If the {d;} series is serially uncorrelated with a sample variance of y, the
estimate of var(d ) is simply y/(H — 1). The expression

d/\y,/(H-1)

has a t-distribution with H — 1 degrees of freedom
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Out-of-Sample Forecasts

10. AMODEL OF THE
INTEREST RATE SPREAD




Panel a: The interest rate spread
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Figure 2.5: Time Path of the Interest Rate Spread
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Figure 2.6: ACF and PACF of the Spread
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Table 2.4: Estimates of the Interest Rate Spread

B4
B,

SSR
AIC
SBC

Q(4)
Q(8)
Q(12)

AR(7)

1.20
(6.57)
1.11
(15.76)
-0.45
(-4.33)
0.40
(3.68)
-0.30
(-2.70)
0.22
(2.02)
-0.30
(-2.86)
0.14
(1.93)

43.86
791.10
817.68

0.18
5.69
13.67

AR(6) AR(2)

1.20 1.19
(7.55)  (6.02)
1.09 1.05
(15.54)  (15.25)
-0.43 -0.22
(-4.11)  (-3.18)
0.36

(3.39)

-0.25

(-2.30)

0.16

(1.53)

-0.15

(-2.11)

44.68  48.02
79292  799.67
816.18  809.63
0.29 8.99

10.93 21.74
16.75 29.37

p=1,2,
and 7
1.19
(6.80)
1.04
(14.83)
-0.20
(-2.80)

-0.03
(-0.77)

47.87
801.06
814.35

8.56
22.39
29.16

ARMA(1, 1)

1.19
(6.16)
0.76
(14.69)

0.38
(5.23)

46.93
794.96
804.93

6.63
18.48
24.38

ARMA(2, 1)

1.19
(5.56)
0.43
(2.78)
0.31
(2.19)

0.69
(5.65)

45.76
791.81
805.10

1.18
12.27
19.14
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p=2

ma = (1, 7)
1.20
(5.74)
0.36
(3.15)
0.38
(3.52)

0.77
(9.62)
-0.14
(-3.27)

43.72
784.46
801.07

0.76
2.60
11.13



Models of Seasonal Data
Seasonal Differencing

11. SEASONALITY
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Seasonality in the Box-Jenkins framework

e Seasonal AR coefficients

— Yt = Q1Y tanYeg T A13Yias
= Yi = Yty T a1815Y113
— (L -a,L)(1 —a;,L2)y,

e Seasonal MA Coefficients

« Seasonal differencing:

— AY; = Y= Ypq VErsus A%y, =y -y,
« NOTE: You do not difference 12 times

— In RATS you can use: dif(sdiffs=1) y / sdy
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Figure 2.7: The Level and Growth Rate of M1
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Panel a: M1 Growth
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Figure 2.8: ACF and PACF
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Three Models of Money growth

Model 1: AR(1) with Seasonal MA
m =a,+am., + &+ 6.
Model 2: Multiplicative Autoregressive
m=a,+(1+aL)(1+aLYm_, +g
Model 3: Multiplicative Moving Average

m=a,+ 1+ L1+ ALY
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0.541
(8.59)

3.97 (0.410)

24.21
32.75

Table 2.5 Three Models of Money Growth

0.496
(7.66)

~0.476
(—7.28)

0.0214

—701.3
—691.7

0.002
0.001
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0.453
(6.84)

~0.751
(-14.87)

0.0193

-720.1
-710.4

30.41 (0.000

22.19 (0.000
42.55 (0.000
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Figure 2.9: Forecasts of M1
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Testing for Structural Change
Endogenous Breaks
Parameter Instability

An Example of a Break

12. PARAMETER INSTABILITY
AND STRUCTURAL CHANGE
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Parameter Instability and the CUSUMS

* Brown, Durbin and Evans (1975) calculate whether the cumulated sum of the
forecast errors is statlstlcally different from zero. Define:

CUSUM Ze(l)/a

n = date of the first forecast error you constructed, o, is the estimated
standard deviation of the forecast errors.

Example: With 150 total observations (T = 150), if you start the procedure
using the first 10 observations (n = 10), 140 forecast errors (T — n) can be
created. Note thato, is created using all T — n forecast errors.

To create CUSUM,,, use the first ten observations to create e,,(1)/o,. Now
let N = 11 and create CUSUM,; as [e44(1)+e1(1))/ o Slmllariy, CU§UMT =

[10(1)+...+er (D)) o

If you use the 5% significance level, the plot value of each value of
CUSUM,, should be within a band of approximately + 0.948 [ (T —n)%° +
2(N = n) (T —ny057.
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Figure 2.10: Recursive Estimation of the Model
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Section 13

COMBINING FORECASTS




13 Combining Forecasts

Consider the composite forecast f, constructed as weighted average of the
individual forecasts
for = Wofy + Wofy + +wify (2.71)

and Y w; =1

If the forecasts are unbiased (so that E, ,f;, = y,), it follows that the
composite forecast is also unbiased:

Eifoe = WiE f + WoE fo + + W E i fy
=Wy FWoy + WY =Y,
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A Simple Example

To keep the notation simple, let n = 2.

Subtract y, from each side of (2.71) to obtain

for = Ve = Wy(fr = yo) + (1 —wy)(fo — yy)

Now let e;; and e,, denote the series containing the one-step-ahead forecast errors
from models 1 and 2 (i.e., e;; =y, — f;;) and let e be the composite forecast error.
As such, we can write

€ = Wiy (1 —wy)ey

The variance of the composite forecast error is

var(eg) = wy?var(ey) + (1 —wy)?var(e,) + 2w, (1 — wy)cov(e,ey) (2.72)
Suppose that the forecast error variances are the same size and that cov(e;€,,)
=0. If you take a simple average by setting w, = 0.5, (2.72) indicates that the

variance of the composite forecast is 25% of the variances of either forecast:
var(e,) = 0.25var(e,,) = 0.25var(e,,).
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Optimal Weights

var(ey) = (wy)?var(ey) + (1 — wy)?var(ey) + 2w, (1 — wy)cov(ee,,)

Select the weight w, so as to minimize var(e,):

ovar(e,)

. = 2w, var(e, ) — 2(1—w,) var(e,, ) + 2(1—- 2w,) cov(e,e,,)
Wl

Bates and Granger (1969), recommend constructing the weights
excluding the covariance terms.

W var(e,,) - var(e, )™
' var(e,, ) + var(e,,) Var(elt)_l T var(eZt)‘l

In the n-variable case;

- var(e, )™
" var(e,) " +var(e,) " +...+var(e, )
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Alternative methods

Consider the regression equation

Ve = g + ogfy + apfy + + o + v, (2.75)

It is also possible to force oy =0and o, + o, + + ¢, = 1.

Under these conditions, the ¢;’s would have the direct

Interpretation of optimal weights.
Here, an estimated weight may be negative. Some researchers
would reestimate the regression without the forecast
associated with the most negative coefficient.

Granger and Ramanathan recommend the inclusion of an intercept
to account for any bias and to leave the ¢;’s unconstrained.

As surveyed in Clemen (1989), not all researchers agree with the
Granger—Ramanathan recommendation and a substantial amount
of work has been conducted so as to obtain optimal weights.

Copyright © 2015 John, Wiley & Sons, Inc. All rights reserved.



The SBC

Let SBC, be the SBC from model i and let SBC™ be the SBC from the
best fitting model.

Form o; = exp[(SBC" — SBC,)/2] and then construct the weights

Since exp(0) = 1, the model with the best fit has the weight 1/X¢;. Since
a; 1s decreasing in the value of SBC;, models with a poor fit with have
smaller weights than models with large values of the SBC.
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Example of the Spread

| estimated seven different ARMA models of the interest rate spread. The data
ends in April 2012 and if | use each of the seven models to make a one-step-
ahead forecast for January 2013:

AR(7) AR() AR(2) AR(l1.27]) ARMA(1,1) ARMA(2,1) ARMA(2,1.7]])
foo;sq 0775 0775  0.709 0.687 0.729 0.725 0.799

Simple averaging of the individual forecasts results in a combined forecast of 0.743.
Construct 50 1-step-ahead out-of-sample forecasts for each model so as to obtain

I m. 0.635 0.618 0.583 0.587 0.582 0.600 0.606
|| BT 0135 0139 0.147 0.146 0.148 0.143 0.141
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Next, use the spread (s;) to estimate a regression in the form of (5). If you
omit the intercept and constrain the weights to unity, you should obtain:

Although some researchers would include the negative weights in (6), most
would eliminate those that are negative. If you successively reestimate the
model by eliminating the forecast with the most negative coefficient, you
should obtain:

s,= 0.326f, + 0.170f;, + 0.504f,
The composite forecast using the regression method is:
0.326(0.687) + 0.170(0.729) + 0.504(0.799) = 0.751.

If you use the values of the SBC as weights, you should obtain:

___{AR(7) |AR(6) | AR(2) | AR(I11,2,71]) | ARMA(L1) | ARVMA(2,1) | ARMA(2,111,711) _

N7 0.000 0.000 0.011 0.001 0.112 0.103 0.773

The composite forecast using SBC weights is 0.782. In actuality, the spread in 2013:1 turned
out to be 0.74 (the actual data contains only two decimal places). Of the four methods, simple
averaging and weighting by the forecast error variances did quite well. In this instance, the
regression method and constructing the weights using the SBC provided the worst composite
forecasts.
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APPENDIX 2.1: ML ESTIMATION OF A REGRESSION

. T
InL =7T|n(27z)—TE|n o 1 thz

20° t=1
Let g =y, — bx,
T T 1
INnL=——In2z)-—Ino?* — - :
;@) =710’ =253 (i~ Ax)
oinL_ T 1 & pove Ol 13 2
80'2 - 20_2+20_4 ;(yt IBXt) 8,8 O_Z;(ytxt ﬂxt)
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ML ESTIMATION OF AN MA(1)

Now lety, = fg_; + . The problem is to construct
the {g} sequence from the observed values of
{vs. If we knew the true value of gand knew that

& = 0, we could construct ¢, ... , & recursively.
Given that g = 0, it follows that:
& =Y1

&=Y, = Per =Y~ Y1

&=Y3— P& =Ys— B Yo— 1)

&2=Ya—Pe3=Ya=BlYs=BY2— Y1) ]
In general, g =y, — fs_, so that if L is the lag
operator

&= Y I+ AL = 2 (-A) Y.

T t-1

T T, , 1 Y
InL:7In(27z)—Elna —ZGZZ(Z(—,B) yt_i]

t=1 \ i=0
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