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ECONOMIC TIME SERIES: 
THE STYLIZED FACTS

Section 1
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Figure 3.1 Real GDP, Consumption and Investment
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Figure 3.2 Annualized Growth Rate of Real GDP
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Figure 3.3: Percentage Change in the NYSE US 100: (Jan 4, 2000 - July 16, 2012)
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Figure 3.4 Short- and Long-Term Interest Rates
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Figure 3.5: Daily Exchange Rates (Jan 3, 2000 - April 4, 2013)
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Figure 3.6: Weekly Values of the Spot Price of Oil: (May 15, 1987 - Nov 1, 2013)
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2. ARCH AND GARCH 
PROCESSES

ARCH Processes
The GARCH Model
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Other Methods

• Let t = demeanded daily return. One method is to use 30-
day moving average ∑ ௧ଶଷ଴ߝ

ଵ /30

• Implicit volatility

• Logs can stabilize volatility
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One simple strategy is to model the conditional variance as 
an AR(q) process using squares of the estimated residuals

In contrast to the moving average, here the weights need 
not equal1/30 (or 1/N).

The forecasts are:

2ˆt = 0 + 1
2

1ˆ t  + 2
2

2ˆ t  + … + q
2
t̂ q  + vt 

t
2

1ˆ t  = 0 + 1
2ˆt  + 2

2
1ˆ t  + … + q

2
1t̂ q    
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2
0 1 1t t tv     

Properties of the Simple ARCH Model

Since vt and t-1 are independent:

Et = E[ vt(0 + 1t-1
2 )]1/2 ]  = 0

Et-1t = Et-1vtEt-1 [0 + 1t-1
2 ]1/2 ]  = 0

Et t-i = 0  ( i ≠ 0)

Et
2= E[ vt

2(0 + 1t-1
2 )] = 0 + 1E(t-1) 2

= 0/( 1 - 1 )

Et-1t
2= Et-1 [ vt

2(0 + 1(t-1 ) 2 )]  = 0 + 1(t-1) 2
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ARCH Interactions with the Mean

Consider: yt =a0 + a1yt–1 + t

Var(ytyt–1, yt–2, …) = Et–1(yt – a0 – a1yt–1)2

= Et–1(t)2 = 0 + 1(t–1)2

Unconditional Variance:

Since: 0
1
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Figure 3.7: Simulated ARCH Processes
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Other Processes
2

0
1

q

t t i t -i
i=

=   +    v   ARCH(q)

GARCH(p, q) h  v =      ttt

2
0

1 1

q p

t i t i i t i
i i

h h    
 

   

The benefits of the GARCH model should be clear; a high-order 
ARCH model may have a more parsimonious GARCH 
representation that is much easier to identify and estimate. This is 
particularly true since all coefficients must be positive. 
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Testing For ARCH 
• Step 1:  Estimate the {yt} sequence using the "best fitting" ARMA 

model (or regression model) and obtain the squares of the fitted errors .  
Consider the regression equation:

If there are no ARCH effects a1 = a2 = … = 0
• All the coefficients should be statistically significant
• No simple way to distinguish between various ARCH and GARCH 

models

...2
22

2
110

2   ttt aaa 
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Testing for ARCH II

• Examine the ACF of the squared residuals:
– Calculate and plot the sample autocorrelations of the 

squared residuals

– Ljung–Box Q-statistics can be used to test for groups of 
significant coefficients. 

2

1

( 2) /( )
n

i
i=

Q = T T + T i   

Q has an asymptotic 2 distribution with n degrees of freedom



Copyright © 2015 John, Wiley & Sons, Inc. All rights reserved.

Engle's Model of U.K. Inflation 

• Let = inflation and r = real wage

t = 0.0257 + 0.334t–1 + 0.408t–4 – 0.404t–5 + 0.0559rt–1 + t 

the variance of t is ht = 8.9 x 10-5 

t = 0.0328 + 0.162t–1 + 0.264t–4 – 0.325t–5 +  0.0707rt–1 + t 

ht = 1.4 x 10–5 + 0.955(0.4 + 0.3L + 0.2L2 + 0.1L3 ) t-1 )2

(8.5 x 10-6)   (0.298)
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4. THREE EXAMPLES OF 
GARCH MODELS

A GARCH Model of Oil Prices
Volatility Moderation
A GARCH Model of the Spread
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A GARCH Model of Oil Prices
• Use OIL.XLS to create 

pt = 100.0*[log(spott) − log(spott−1)]. 

The following MA model works well: 
pt = 0.127 + t + 0.177t−1 + 0.095t−3

The McLeod–Li (1983) test for ARCH errors using four lags:

The F-statistic for the null hypothesis that the coefficients 1 through 4 all 
equal zero is 26.42. With 4 numerator and 1372 denominator degrees of 
freedom, we reject the null hypothesis of no ARCH errors at any 
conventional significance level.

...2
22

2
110

2   ttt aaa 
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The GARCH(1,1) Model

pt = 0.130 + t + 0.225t−1

ht = 0.402 + 0.097 (t−1)2+ 0.881ht−1
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Volatility Moderation
Use the file RGDP.XLS to construct the growth rate of real U.S. GDP 

yt = log(RGDPt/RGDPt1).

A reasonable model is:
yt = 0.005 + 0.371yt1 + t
(6.80)    (6.44)

After checking for GARCH errors

yt = 0.004 + 0.398yt1 + t
(7.50)     (6.76)

ht = 1.10x104 + 0.182 – 8.76x105Dt
(7.87) (2.89)          (–6.14)

The intercept of the variance equation was 1.10  104 prior to 1984Q1 and 
experienced a significant decline to 2.22  105 (= 1.10  104 – 8.76  105) 
beginning in 1984Q1.
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Figure 3.8: Forecasts of the Spread
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A GARCH MODEL OF RISK
Section 5
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Holt and Aradhyula (1990)
• The study examines the extent to which producers in the U.S. 

broiler (i.e., chicken) industry exhibit risk averse behavior.  
– The supply function for the U.S. broiler industry takes the 

form:

qt = a0 + a1pe
t - a2ht - a3pfeedt-1 + a4hatcht-1 + a5qt-4 + ε1t

qt = quantity of broiler production (in millions of pounds) in t; 
pe

t = Et-1pt = expected real price of broilers at t
ht = expected variance of the price of broilers in t
pfeedt-1 = real price of broiler feed (in cents per pound) at t-1; 
hatcht-1 = hatch of broiler-type chicks in t-1; 
ε1t = supply shock in t; 

and the length of the time period is one quarter. 



Copyright © 2015 John, Wiley & Sons, Inc. All rights reserved.

• Note the negative effect of the conditional variance of price on 
broiler supply.  

• The timing of the production process is such that feed and 
other production costs must be incurred before output is sold 
in the market. 

• Producers must forecast the price that will prevail two months 
hence.  

• The greater pt
e, the greater the number of chicks that will be 

fed and brought to market. 
• If price variability is very low, these forecasts can be held with 

confidence.  Increased price variability decreases the accuracy 
of the forecasts and decreases broiler supply.  
– Risk-averse producers will opt to raise and market fewer 

broilers when the conditional volatility of price is high. 
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The Price equation

• (1 - 0.511L - 0.129L2 - 0.130L3 - 0.138L4)pt = 1.632 + ε2t

• ht = 1.353  + 0.162ε2t-1 + 0.591ht-1

• The paper assumes producers use these equations to form 
their price expectations.  The supply equation: 

qt = 2.767pe
t - 0.521Et-1ht - 4.325pfeedt-1

+ 1.887hatcht-1 + 0.603pt-4 + ε1t
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Section 6: THE ARCH-M MODEL

• Engle, Lilien, and Robins let
yt = t + t

where yt = excess return from holding a long-term asset 
relative to a one-period treasury bill and t is a time-
varying risk premium: Et–1yt = t

The risk premium is:
t =  + ht ,  > 0 

2
0

1

q

t i t i
i

h    

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Figure 3.9: Simulated ARCH-M Processes
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7. ADDITIONAL 
PROPERTIES OF GARCH 
PROCESS

Diagnostic Checks for Model Adequacy
Forecasting the Conditional Variance
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Forecasting with the GARCH(1, 1)
2 2

1 1 0 1 11. T T T T TE h h        

2 2 2
0 1 1 1 12. Variance: ( )t t t tv h       

2 2 2
0 1 1 1 1( )t t t tE Ev E Eh       

2 2
1 2 1 1: ( )t t t tNote E E E Eh     

2 2
0 1 1 1 0 1 1( ) /(1 )t tE E            

23. Mult-Step Forecasts: Note that t t j t t jE E h  

2
0 1 1 1 1t t j t t j t t jE h E E h         

Etht+j = 0 + (1 + 1)Etht+j–1

2 1
0 1 1 1 1 1 1 1 1[1 ( ) ( ) ... ( ) ] ( )j j

t t j tE h h        
          

The 1-step ahead forecast can be calculated directly.  
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Volatility Persistence
Large values of both 1 and 1 act to increase the conditional 
volatility but they do so in different ways. 

Figure 3.10: Persistence in the GARCH(1, 1) Model
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Assessing the Fit

2

1

RSS'
T

t
t

v


 
2

1

RSS' ( / )
T

t t
t

h




Standardized residuals:

AIC' = –2 ln L + 2n
SBC' = –2ln L + n ln(T)

where L likelihood function and n is the 
number of estimated parameters. 
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Diagnostic Checks for Model Adequacy

• If there is any serial correlation in the standardized 
residuals--the {st} sequence--the model of the mean is not 
properly specified.

• To test for remaining GARCH effects, form the Ljung–Box 
Q-statistics of the squared standardized residuals.
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MAXIMUM LIKELIHOOD 
ESTIMATION

Section 8
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Maximum Likelihood and a Regression

Nonlinear Estimation 37

2 2
2

1(1/ 2) ln(2 ) (1/ 2) ln 2 ( )
2 t ty x  


  

Under the usual normality assumption, the log likelihood of
observation t is:

With T independent observations:

22
2

1

1log ln( 2 ) ln ( )
2 2 2

T

tt
t

T T L               y x 
  

 

    

We want to select  and 2 so as to maximize L

2 2ˆ /t T  2ˆ /t t tx y x  
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The Likelihood Function with ARCH errors

Nonlinear Estimation 38

21 exp
22

t
t

tt

L
hh




   
        

2

1 1

ln ln (2 ) 0.5 ln 0.5 ( / )
2

TT

t t t
t t=

TL = h h 


   

For observation t

Now substitute for t and ht

 22 2
0 1 1 0 1 1

2 2

1 1ln ln (2 ) 0.5 ln( ) [ / ( )]
2 2

T T

t t t t
t= t=

TL =  y x        


      

There are no analytic solutions to the first-order conditions for a maximum. 
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OTHER MODELS OF 
CONDITIONAL VARIANCE

Section 9
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IGARCH

The IGARCH Model: Nelson (1990) argued that constraining 1 + 
1 to equal unity can yield a very parsimonious representation of the 
distribution of an asset’s return.

Etht+1 = 0 + ht

and 

Etht+j = j0 + ht

2
0 1 1 1(1 )t t th Lh      

2
0 1 1 1 1

0
/(1 ) (1 ) i

t t i
i

h     


 


    
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RiskMetrics
RiskMetrics assumes that the continually compounded daily return of 
a portfolio follows a conditional normal distribution.

The assumption is that:   rt|It-1 ~ N(0, ht)

ht = (t-1)2 + ( 1 -  )(ht-1) ;  > 0.9

Note: (Sometimes rt-1 is used). This is an IGARCH without an
intercept.

Suppose that a loss occurs when the price falls. If the 
probability is 5%, RiskMetrics uses 1.65ht+1 to measure the 
risk of the portfolio. The Value at Risk (VaR) is:

VaR = Amount of Position x 1.65(ht+1)1/2 and for k days is

VaR(k) = Amount of Position x 1.65(k ht+1)1/2
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Why Do We Care About ARCH Effects?

Nonlinear Estimation 42

22
2

1

ln ln (2 ) ln ( )
2 2 2

T

t t
t=

T T 1L =  -   -   y x  


 

2

1 1

ln ln (2 ) 0.5 ln 0.5 [( ) / ]
2

TT

t t t
t t=

TL = h  y x h 


    

1. We care about the higher moments of the distribution. 

2. The estimates of the coefficients of the mean are not correctly 
estimated if there are ARCH errors. Consider

3. We want to place conditional confidence intervals around our 
forecasts
(see next page)
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Example from Tsay

Suppose rt = 0.00066 – 0.0247rt-2 + t
ht = 0.00000389 + 0.0799(t-1)2 + 0.9073(ht-1) 

Given current and past returns, suppose:  
ET(rT+1) = 0.00071

and
ET(hT+1) = 0.0003211 

The 5% quantile is 0.00071 – 1.6449*(0.0003211)1/2 = -0.02877

The VaR for a portfolio size of $10,000,000 with probability 0.05 
is

($10,000,000 )(-0.02877) = $287,700

i.e., with 95% chance, the potential loss of the portfolio is 
$287,700 or less.
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Models with Explanatory Variables
21t

To model the effects of 9/11 on stock returns, 
create a dummy variable Dt equal to 0 before 9/11 
and equal to 1 thereafter. Let

ht = 0 + 1 + 1ht–1 + Dt
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TARCH and EGARCH

• Glosten, Jaganathan and Runkle (1994) showed how to 
allow the effects of good and bad news to have different 
effects on volatility. Consider the threshold-GARCH 
(TARCH) process

2 2
0 1 1 1 1 1 1 1t t t t th d h           
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Expected 
Volatility (Etht+1)

New Information

t

a
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c

0

Figure 3.11: The leverage effect
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The EGARCH Model
0.5 0.5

0 1 1 1 1 1 1 1 1ln( ) ( / ) | / | ln( )t t t t t th h h h            

1. The equation for the conditional variance is in log-linear form. 
Regardless of the magnitude of ln(ht), the implied value of ht can never 
be negative. Hence, it is permissible for the coefficients to be negative.  
2. Instead of using the value of , the EGARCH model uses the level of 
standardized value of t–1 [i.e., t–1 divided by (ht–1)0.5]. Nelson argues 
that this standardization allows for a more natural interpretation of the 
size and persistence of shocks. After all, the standardized value of t–1 is 
a unit-free measure. 
3. The EGARCH model allows for leverage effects. If t–1/(ht–1)0.5 is 
positive, the effect of the shock on the log of the conditional variance is 
1 + 1. If t–1/(ht–1)0.5 negative, the effect of the shock on the log of the 
conditional variance is –1 + 1. 
4. Although the EGARCH model has some advantages over the 
TARCH model, it is difficult to forecast the conditional variance of an 
EGARCH model.



Copyright © 2015 John, Wiley & Sons, Inc. All rights reserved.

Testing for Leverage Effects 

201122...tttsaasas 201122...tttsaasas 201122...tttsaasas 

2
0 1 1 2 2 ...t t ts a a s a s    

1. If there are no leverage effects, the squared errors should be 
uncorrelated with the level of the error terms

2. The Sign Bias test uses the regression equation of the form
2

0 1 1 1t t ts a a d   

where dt–1 is to 1 if  t-1 < 0 and is equal to zero if  t-1  0.

3. The more general test is  
2

0 1 1 2 1 1 3 1 1 1(1 )t t t t t t ts a a d a d s a d s          

dt–1st–1 and (1 – dt–1)st–1 indicate whether the effects of positive and negative 
shocks also depend on their size. You can use an F-statistic to test the null 
hypothesis a1 = a2 = a3 = 0. 
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Figure 3.12: Comparison of the Normal and t Distribuitions
( 3 degrees of freedom)
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rt = 0.043 + t – 0.058rt1  0.038rt2 AIC = 9295.36, SBC = 9331.91 
(2.82)        (–3.00)       (1.91)

ht 2(௧ߝ) 0.084 + 0.014 = + 0.906 ht1
(4.91)    (9.59)         (98.31) 

Instead, if we use a t-distribution, we obtain 

rt = 0.061 + t – 0.062rt1  0.045rt2 AIC = 9162.72, SBC = 9205.37
(5.24)        (–3.77)       (2.64)

ht 2(௧ߝ)0.089 + 0.009 = + 0.909 ht1
(3.21)    (8.58)         (95.24)

The estimated model



Copyright © 2015 John, Wiley & Sons, Inc. All rights reserved.

0

0.1

0.2

0.3

0.4

-5 -4 -3 -2 -1 0 1 2 3 4 5

Figure 3.13: Returns of the NYSE Index of 100 Stocks 

Actual returns Normal distribution t-distribution
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Figure 3.15: The Estimated Variance
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MULTIVARIATE GARCH 
Section 11
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11. MULTIVARIATE GARCH

If you have a data set with several variables, it often makes 
sense to estimate the conditional volatilities of the variables 
simultaneously. 

Multivariate GARCH models take advantage of the fact that 
the contemporaneous shocks to variables can be correlated 
with each other.

Equation-by-equation estimation is not efficient

Multivariate GARCH models allow for volatility spillovers in 
that volatility shocks to one variable might affect the volatility 
of other related variables
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• Suppose there are just two variables, x1t and x2t. For now, we are 
not interested in the means of the series 

• Consider the two error processes

1t = v1t(h11t)0.5
2t = v2t(h22t)0.5

• Assume var(v1t) = var(v2t) = 1, so that h11t and h22t are the 
conditional variances of 1t and 2t, respectively. 

• We want to allow for the possibility that the shocks are correlated, 
denote h12t as the conditional covariance between the two shocks. 
Specifically, let h12t = Et‐11t2t. 
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The VECH Model 

A natural way to construct a multivariate GARCH(1, 1) is the vechmodel

h11t = c10 + 11 (1t-1)2 + 121t‐12t‐1 + 13 (2t-1)2 + 11h11t–1
+ 12h12t–1 + 13h22t‐1

h12t = c20 + 21 (1t-1)2 + 221t‐12t‐1 + 23 (2t-1)2 + 21h11t–1
+ 22h12t–1 + 23h22t‐1

h22t = c30 + 31 (1t-1)2 + 321t‐12t‐1 + 33 (2t-1)2 + 31h11t–1
+ 32h12t–1 + 33h22t‐1

The conditional variances (h11t and h22t) and covariance depend on their 
own past, the conditional covariance between the two variables (h12t), 
the lagged squared errors, and the product of lagged errors (1t‐12t‐1). 
Clearly, there is a rich interaction between the variables. After one 
period, a v1t shock affects h11t, h12t, and h22t. 
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ESTIMATION
Multivariate GARCH models can be very difficult to estimate. The 
number of parameters necessary can get quite large. 

In the 2‐variable case above, there are 21 parameters.

Once lagged values of {x1t} and {x2t} and/or explanatory variables are 
added to the mean equation, the estimation problem is complicated. 

As in the univariate case, there is not an analytic solution to the 
maximization problem. As such, it is necessary to use numerical 
methods to find that parameter values that maximize the function L. 

Since conditional variances are necessarily positive, the restrictions for 
the multivariate case are far more complicated than for the univariate
case. 

The results of the maximization problem must be such that every 
one of the conditional variances is always positive and that the 
implied correlation coefficients, ij = hij/(hiihjj)0.5, are between –1 
and +1.
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The diagonal vech

• One set of restrictions that became popular in the early literature is 
the so-called diagonal vech model. The idea is to diagonalize the system 
such that hijt contains only lags of itself and the cross products of itjt. 
For example, the diagonalized version of (3.42)  (3.44) is

h11t = c10 + 11(1t-1)2 + 11h11t–1
h12t = c20 + 221t-12t-1 + 22h12t-1
h22t = c30 + 33(2t-1)2 + 33h22t–1

• Given the large number of restrictions, model is relatively easy to 
estimate. 

• Each conditional variance is equivalent to that of a univariate
GARCH process and the conditional covariance is quite 
parsimonous as well.

• The problem is that setting all ij = ij = 0 (for i  j) means that there 
are no interactions among the variances. A 1t-1 shock, for example, 
affects h11t and h12t, but does not affect the conditional variance h2t. 
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THE BEKK

•Engle and Kroner (1995) popularized what is now called the BEK (or 
BEKK) model that ensures that the conditional variances are positive. 
The idea is to force all of the parameters to enter the model via 
quadratic forms ensuring that all the variances are positive. Although 
there are several different variants of the model, consider the 
specification

Ht = C'C + A't-1t-1'A + B'Ht-1B

where for the 2-variable case 

11 12 11 12 11 12

12 22 21 22 21 22

; ;
c c

C A B
c c

   
   

     
       
     

If you perform the indicated matrix multiplications you will find
2 2 2 2 2 2

11 11 12 11 1 1 11 21 1 1 2 1 21 2 1
2 2

11 11 1 11 21 12 1 21 22 1

( ) ( 2 )

( 2 )
t t t t t

t t t

h c c

h h h

       

   
   

  

     

 
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THE BEK II
• In general, hijt will depend on the squared residuals, 
cross‐products of the residuals, and the conditional 
variances and covariances of all variables in the 
system. 
– The  model allows for shocks to the variance of one of 
the variables to “spill‐over” to the others. 

– The problem is that the BEK formulation can be quite 
difficult to estimate. The model has a large number of 
parameters that are not globally identified. Changing 
the signs of all elements of A, B or C will have effects on 
the value of the likelihood function. As such, 
convergence can be quite difficult to achieve. 

•
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2 2 2 2 2 2 2 2
11 11 12 11 1 1 11 21 1 1 2 1 21 2 1 11 11 1 11 21 12 1 21 22 1( ) ( 2 ) ( 2 )t t t t t t t th c c h h h                        
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   
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The BEKK (and Vech) as a VAR
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Constant Conditional Correlations (CCC)
• As the name suggests, the (CCC)model restricts the 

correlation coefficients to be constant. As such, for each i 
j, the CCC model assumes hijt = ij(hiithjjt)0.5.  

• In a sense, the CCC model is a compromise in that the 
variance terms need not be diagonalized, but the 
covariance terms are always proportional to (hiithjjt)0.5. For 
example, a CCC model could consist of (3.42), (3.44) and 

• h12t = 12(h11th22t)0.5

• Hence, the covariance equation entails only one parameter 
instead of the 7 parameters appearing in (3.43). 
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EXAMPLE OF THE CCC MODEL
• Bollerslev (1990) examines the weekly values of the 
nominal exchange rates for five different countries‐‐
the German mark (DM), the French franc (FF), the 
Italian lira(IL), the Swiss franc (SF), and the British 
pound (BP)‐‐relative to the U.S. dollar. 
– A five‐equation system would be too unwieldy to 
estimate in an unrestricted form. 

– For the model of the mean, the log of each exchange 
rate series was modeled as a random walk plus a drift

– yit = i + it (3.45)
• where yit is the percentage change in the nominal 
exchange rate for country i, 

• Ljung‐Box tests indicated each series of residuals did 
not contain any serial correlation
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 Next, he tested the squared residuals for serial dependence. For 
example, for the British pound, the Q(20)-statistic has a value of 
113.020; this is significant at any conventional level. 

 Each series was estimated as a GARCH(1, 1) process.The
specification has the form of (3.45) plus

hiit = ci0 + ii (it-1)2 + iihiit–1 (i = 1, …, 5)

hijt = ij(hiithjjt)0.5 (i  j)

• The model requires that only 30 parameters be estimated (five 
values of i, the five equations for hiit each have three parameters, 
and ten values of the ij). 

• As in a seemingly unrelated regression framework, the system‐wide 
estimation provided by the CCC model captures the 
contemporaneous correlation between the various error terms. 
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RESULTS

DM FF IL SF
FF 0.932
IL 0.886 0.876
SW 0.917 0.866 0.816
BP 0.674 0.678 0.622 0.635

It is interesting that correlations among continental European 
currencies were all far greater than those for the pound. 
Moreover, the correlations were much greater than those of 
the preEMS period. Clearly, EMS acted to keep the exchange 
rates of Germany, France, Italy and Switzerland tightly in line 
prior to the introduction of the Euro. 

• The estimated correlations for the period during which the European 
Monetary System (EMS) prevailed are
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The file labeled EXRATES(DAILY).XLS contains the 2342 daily values of 
the Euro, British pound, and Swiss franc over the Jan. 3, 2000 – Dec. 23, 2008 
period. Denote the U.S. dollar value of each of these nominal exchange rates as 
eit where i = EU, BP and SW.  

 
Construct the logarithmic change of each nominal exchange rate as yit = log(eit/eit-1). 

Although the residual autocorrelations are all very small in magnitude, a few are 
statistically significant. For example, the autocorrelations for the Euro are 

 
1  2 3 4 5 6

0.036 –0.004 –0.004 0.063 0.001 –0.036
 
With T = 2342, the value of 4 is statistically significant and the value of the Ljung-

Box Q(4) statistic is 12.37. Nevertheless, most researchers would not attempt to model 
this small value of the 4-th lag. Moreover, the SBC always selects models with no lagged 
changes in the mean equation.  
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For the second step, you should check the squared residuals for the 
presence of GARCH errors. Since we are using daily data (with a five-
day week), it seems reasonable to begin using a model of the form
The sample values of the F-statistics for the null hypothesis that 1 = … 
= 5 = 0 are 43.36, 89.74, and 20.96 for the Euro, BP and SW, 
respectively. Since all of these values are highly significant, it is 
possible to conclude that all three series exhibit GARCH errors. 

The sample values of the F-statistics for the null hypothesis that 1 = 
… = 5 = 0 are 43.36, 89.74, and 20.96 for the Euro, BP and SW, 
respectively. Since all of these values are highly significant, it is 
possible to conclude that all three series exhibit GARCH errors. 

5
2 2

0 5
1

ˆ ˆt i t
i

    


 
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If you estimate the three series as GARCH(1, 1) process using the CCC 
restriction, you should find the results reported in Table 3.1. 
 

Table 3.1: The CCC Model of Exchange Rates 
 c 1 1 

Euro 1.32x10-7

(2.44)
0.047 

(10.79) 
0.951 

(240.91) 
Pound 2.42x10-7

(3.28)
0.040 
(7.71) 

0.953 
(149.15) 

Franc 2.16x10-7

(2.57)
0.059 

(12/82) 
0.940 

(215.36) 
 

If we let the numbers 1, 2, and 3 represent the euro, pound, and franc, the correlations 
are 12 = 0.68, 13 = 0.87, and 23 = 0.60.  As in Bollerslev’s paper, the pound and the 
franc continue to have the lowest correlation coefficient.  
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By way of contrast, it is instructive to estimate the model using the diagonal vech 
specification such that each variance and covariance is estimated separately. The 
estimation results are given in Table 3.2.  

  h11t h12t h13t h22t h23t h33t 

c 4.01x10-7 2.50 x10-7 4.45 x10-7 2.62 x10-7 2.32 x10-7 5.88 x10-7

 (18.47) (6.39) (33.82) (4.31) (6.39) (10.79) 

1 0.047 0.035 0.047 0.037 0.033 0.050 

 (14.51) (11.89) (14.97) (9.59) (12.01) (14.07) 

1 0.946 0.956 0.945 0.956 0.959 0.941 

 (319.44) (268.97) (339.91) (205.04) (309.29) (270.55) 
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Now, the correlation coefficients are time varying. For example, the 
correlation coefficient between the pound and the franc is given by 
h23t/(h22th33t)0.5.  

The time path of this correlation coefficient is shown as the solid line in 
Figure 3.16.  

Although the correlation does seem to fluctuate around 0.64 (the value found 
by the CCC method), there are substantial departures from this average value.  

Beginning in mid-2006, the correlation between the pound and the franc 
began a long and steady decline ending in March of 2008. The correlation 
increased with fears of a U.S. recession and then sharply fell with the onset on 
the U.S. financial crisis in the Fall of 2008. 
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Figure 3.16: Pound/Franc Correlation from the Diagonal vech
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Figure 3.17 Variance Impulse Responses from Oct. 29, 2008

Panel a: Volatility Response of the Euro
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Appendix: The Log Likelihood Function
2 2
1 2 12 1 2

2 0.52
12 11 22 11 2211 22 12

21 1exp
2(1 ) ( )2 (1 )

t t t t
tL

h h h hh h
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 

  
        

where 12 is the correlation coefficient between 1t and 2t; 
12 = h12/(h11h22)0.5. 

Now define

11 12

12 22

h h
H

h h
 

  
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1
1/ 2

1 1exp
22

t t tL H
H

 


    

where t = ( 1t, 2t )', and | H | is the determinant of H. 
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Now, suppose that the realizations of {t} are independent, so 
that the likelihood of the joint realizations of 1, 2, … T is the 
product in the individual likelihoods. Hence, if all have the same 
variance, the likelihood of the joint realizations is

1
1/ 2
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1 1exp
22

T

t t
t

L H
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MULTIVARIATE GARCH MODELS
For the 2-variable 
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The form of the likelihood function is identical for models with k
variables. In such circumstances, H is a symmetric k x k matrix, t is a 
k x 1 column vector, and the constant term (2) is raised to the power 
k. 
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The vech Operator
The vech operator transforms the upper (lower) triangle of 
a symmetric matrix into a column vector. Consider the 
symmetric covariance matrix

11 12

12 22

t t
t

t t

h h
H

h h
 

  
 

vech(Ht) =  [ h11t, h12t, h22t ]

Now consider t = [1t, 2t]. The product tt = [1t, 2t][1t, 2t] is

2
1 1 2

2
1 2 1

t t t

t t t

  
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 
 
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If we now let C =  [ c1, c2, c3 ], A = the 3 x 3 
matrix with elements ij, and B = the 3 x 3 
matrix with elements ij, we can write

vech(Ht) = C + A vech(t-1t-1) + Bvech(Ht-1)

it should be clear that this is precisely the 
system represented by (3.42)  (3.44). The 
diagonal vech uses only the diagonal 
elements of A and B and sets all values of ij
= ij = 0 for i  j.
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Constant Conditional Correlations
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Now, if h11t and h22t are both GARCH(1, 1) processes, there are 
seven parameters to estimate (the six values of ci, ii and ii
and 12). 
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Dynamic Conditional Correlations

• STEP 1: Use Bollerslev’s CCC model to obtain the 
GARCH estimates of the variances and the standardized 
residuals

• STEP 2: Use the standardized residuals to estimate the 
conditional covariances. 
– Create the correlations by smoothing the series of 

standardized residuals obtained from the first step. 
– Engle examines several smoothing methods. The simplest is 

the exponential smoother qijt = (1  )sitsjt + qijt-1 for  < 1. 
– Hence, each {qiit} series is an exponentially weighted moving 

average of the cross-products of the standardized residuals.
– The dynamic conditional correlations are created from the qijt

as ijt = qijj/(qijtqjjt)0.5


