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LINEAR VERSUS NONLINEAR ADJUSTMENT

• On a long automobile trip to a new location, you might take 
along a road atlas. … For most trips, such a linear 
approximation is extremely useful. Try to envision the 
nuisance of a nonlinear road atlas. 

• For other types of trips, the linearity assumption is clearly 
inappropriate. It would be disastrous for NASA to use a flat 
map of the earth to plan the trajectory of a rocket launch. 

• Similarly, the assumption that economic processes are linear 
can provide useful approximations to the actual time-paths of 
economic variables. 
– Nevertheless, policy makers could make a serious error if 

they ignore the empirical evidence that unemployment 
increases more sharply than it decreases.
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The Use of Nonlinear Models
• It is now generally agreed that linear econometric models do not 

capture the dynamic relationships present in many economic time-
series. 
– The observation that firms are more apt to raise than to lower 

prices is a key feature of many macroeconomic models. 
– Neftci (1984), Falk(1986), DeLong and Summers (1988), Granger 

and Lee (1989), and Teräsvirta and Anderson (1992) establish the 
result that many real variables display non-linear adjustment over 
the course of the business cycle. 

– In several papers, Enders and Sandler model many terrorist 
incident series as nonlinear.

• However, adopting an incorrect non-linear specification may be more 
problematic than simply ignoring the non-linear structure in the data. It 
is not surprising, therefore, that non-linear model selection is an 
important area of current research.
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The Interest Rate Spread

• There is evidence that interest rate spreads (st) display a 
nonlinear adjustment pattern.

• As long as | a2 | > | a1 |, periods when st–1 <  will tend to be 
more persistent than other periods.
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Figure 7.1: Two Nonlinear Adjustment Paths 
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Autoregressive Moving Average (ARMA) Models

The standard ARMA (p, q) model has the form:

• ARMA (p, q) models have popularized by Box and Jenkins
• The main econometric problem is to determine the lag lengths p and q and 

then estimate the parameters αi and βi. If all βi = 0, the ARMA model is a 
pure autoregressive (AR) model of order p. 

• The second econometric problem is to determine the degree of 
differencing that is appropriate to render {yt} stationary.

• The key point to note is that the ARMA model is linear; all values of yt-i
and εt-i are raised to the power 1 and there are no cross-products of the 
form of yt-i εt-j or yt-i yt-j
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The NLAR(p) Model

• The p-th order nonlinear autoregressive model is:

• For an NLAR(2), a Taylor series expansion is 
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Generalized Autoregressive (GAR) Models
The general form of a GAR model is:

where: p, q, r, s, and u are integers that are greater or equal to 1.

• GAR models extend AR models by adding various powers of lagged 
values and cross-products of yt-i. Since GAR models are linear in their 
parameters, they can be estimated using OLS.

• You can use traditional t-tests and F-tests to pare down the number of 
parameters estimated. However, this can be tricky since the regressors are 
likely to be highly correlated. As such, the usual practice is to pare down 
the equation using the AIC or SBC. 
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Bilinear Autoregressive (BL) Models
• The general form of the bilinear model BL (p, q, r, s) is:

• Bilinear models are a natural extension of ARMA models in 
that they add the crossproducts of yt-i and εt-j to account for 
non-linearity. If all values of cij equal zero, the bilinear model 
reduces to the linear ARMA model. Priestley (1980) argues 
that bilinear models can approximate any reasonable non-
linear relationship. 

• The bilinear model can be viewed as having stochastic 
parameter variation
– This is equivalent to a model with ARCH effects
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Figure 7.2: Comparison of Linear and Nonlinear Processes
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Rothman’s unemployment estimates (1998) 

AETS 3rd. edition 12

AR   ut = 1.563ut–1 – 0.670ut–2 + t
(22.46)      (–10.06)

GAR ut = 1.500ut–1 – 0.553ut–2 – 0.745 (ut‐2 )3 + t variance ratio = 0.965
(23.60)      (–6.72)       (–2.33)

BL ut = 1.910ut–1 – 0.690ut–2 – 0.585ut–1t–3 + t variance ratio = 0.936
(24.11)      (–10.55)     (–2.08)

where ut = the detrended log of the unemployment rate  over the 1948Q1 to
1979Q4 period

The AIC was used to select the most appropriate values of p and q
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Rothman II

• It is instructive to write the estimated GAR model as

ut = 1.500ut–1 – [0.553+ 0.745(ut–2)2 ] ut–2 + t

As such, large deviations are less persistent. For the bilinear 
model:

ut = 1.910ut–1 – 0.690ut–2 – 0.585ut–1t–3 + t

Rothman indicates that ut–1 and t–3 are positively correlated. 
Since the coefficient on ut–1t–3 is negative, large shocks to the 
unemployment rate imply a faster speed of adjustment than small 
shocks. As ut–1 and t–3 tend to move together, the larger ut–1t–3, 
the smaller is the degree of persistence. 

AETS 3rd. edition 13
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Exponential Autoregressive (EAR) Models
• EAR models were examined extensively by Ozaki and Oda (1978), Haggan

and Ozaki (1981) and Lawrance and Lewis (1980). A standard form of the 
EAR model is:

• In the limit as γ approaches zero or infinity, the EAR model becomes an AR(p) 
model since each θi is constant. Otherwise, the EAR model displays non-linear 
behavior. For example, equation can capture a situation in which the periods 
surrounding the turning points of a series (i.e., periods in which yt-1

2 will be 
extreme) have different degrees of autoregressive decay than other periods. 

• Note that adjustment is symmetric but nonlinear
• This is a special case of the ESTAR model to be considered later
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The ACF Can be Misleading in a Nonlinear Model
Correlation is only a measure of linear association. Consider: 

yt = yt-1xt-1 + μt

where: yt is observable but μt and xt are both white noise.
Here, all k (for k > 0) are zero.

E[yt yt-k] = 2E[(yt-1xt-1 + μt)(yt-kxt-k + μt-k)] 
= 2*0

Also, all cross correlations are zero.  Consider:

E[yt xt-k] = E[(yt-1xt-1 + μt)xt-k]
= *0 for k  1
= Var(x)Eyt-1 = 0

However, the optimal non-linear one-step ahead forecast is: βytxt.
• Also, data generated by an explosive process AR(1) process will have 

an ACF like that from a stationary AR(1) process. 
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Some Tests for Nonlinearity

• McLeod–Li (1983) test: Since we are interested in nonlinear 
relationships in the data, a useful diagnostic tool is to examine 
the ACF of the squares or cubed values of a series. 
– Let i denote the sample correlation coefficient between 

squared residuals  and use the Ljung–Box statistic to 
determine whether the squared residuals exhibit serial 
correlation. 
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Regression Error Specification Test (RESET)

• STEP 1: Estimate the best-fitting linear model. Let {et} be the 
residuals from the model

• STEP 2: Select a value of H (usually 3 or 4) and estimate the 
regression equation:
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t t h t
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e z y 
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where zt is the vector that contains the variables included in the model 
estimated in Step 1.

Hence, you can reject linearity if the sample value of the F-statistic for 
the null hypothesis 2 =  = H = 0 exceeds the critical value from a 
standard F-table. 

The idea is that this regression should have little explanatory power if the 
model is truly linear.
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Specific Testing for Nonlinearity

• Lagrange Multiplier Tests
– You need not estimate the nonlinear model
– They have a specific alternative hypothesis
– Unfortunately, they detect many types of nonlinearity

• Methodology—H0: The model has a particular linear form 
against a specific alternative.
– Step 1.  Estimate the linear portion of the model to get the residuals et

(i.e., estimate the model under H0)
– Step 2.  Regress et on f( )/ evaluated at the constrained values of . 
– Step 3.  From the regression in Step 2, it can be shown that: TR2 ~ χ2

with degrees of freedom equal to the number of restrictions. Thus, if 
the calculated value of TR2 exceeds that in a χ2 table, reject H0.

• With a small sample, it is standard to use an F-test. 
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Example 1

• yt = a0 + a1yt-1 + a2yt-1yt-2 + t
– H0: a2 = 0

• In this case you can estimate the nonlinear model and perform 
a t-test on a2. However to illustrate the procedure:

• Step 1: Estimate the model under H0 to get the estimated 
residuals; i.e., estimate
– yt = a0 + a1yt-1 + et

• Step 2: The partial derivatives of yt w.r.t. parameters are 1, yt-1 
and yt-1yt-2. Hence, regress the residuals on a constant, yt-1 and 
yt-1yt-2 

• Step 3: Find TR2. This is χ2 with 1 degree of freedom 
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Example 2: Bilinear Model
yt = a0 + a1yt-1 + a2yt-2+ yt-2εt-1 + εt

Ho: γ = 0

• Regress yt on a constant yt-1 and yt-2 to obtain et

• Regress et on a constant, yt-1 , yt-2, and yt-2εt-1
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THRESHOLD AUTOREGRESSIVE MODELS

• As in the equation for the spread, if we include a disturbance 
term, the basic TAR model is

• If we assume that the variances of the two error terms are 
equal [i.e., var(1t) = var(2t)]

• where It = 1 if yt–1 > 0 and It = 0 if yt–1  0.
• The indicator can also be set using yt
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The Standard TAR Model

• Consider

• where It = 1 if yt–1 >  and It = 0 if yt–1  .
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The M-TAR Model

• The momentum threshold autoregressive (M-TAR) model used by Enders 
and Granger (1998) allows the regime to change according to the first-
difference of {yt-1}. Hence, equation is replaced with:

• It is argued that the M-TAR model is useful for capturing situations in 
which the degree of autoregressive decay depends on the direction of 
change in {yt}. 

• Enders and Granger (1998) and Enders and Siklos (2001) show that 
interest rate adjustments to the term-structure relationship display M-TAR 
behavior. It is important to note that for the TAR and M-TAR models, if all 
1i = 2i the TAR and M-TAR models are equivalent to an AR(p) model. 

• See TAR_figure.prg
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Extensions

• Selecting the Delay Parameter
• Multiple Regimes

– band-TAR

st = +a1(st–1   ) + t when st–1 >  + c
st = st–1 + t when  – c < st–1  + c
st = +a2(st–1 – ) + t when st–1  – c
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Estimating 
• If τ is known, the estimation of the TAR and M-TAR models is 

straightforward. Simply form the variables y= Ityt-i and y = (1 - It )yt-i and 
estimate equation using OLS. The lag length p can be determined as in an 
AR model. 

• When τ is unknown, Chan (1993) shows how to obtain a super-consistent 
estimate of the threshold parameter. For a TAR model, the procedure is to 
order the observations from smallest to largest such that:

For each value of yi, let τ = yi and set the Heaviside indicator accordingly. 

Estimate TAR model--the regression equation with the smallest residual sum 
of squares contains the consistent estimate of the threshold. 

In practice, the highest and lowest 10% of the {y} values are excluded from 
the grid search to ensure an adequate number of observations on each side 
of the threshold. For the M-TAR model, is replaced by the ordered first-
differences of the observations.

1 2 ... Ty y y  
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Figure 7.7: SSR and the Potential Thresholds
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Figure 7.6 The U.S. Unemployment Rate
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Unidentified Nuisance Parameters

• Example 1:
– Estimate by NLLS. Under the null 2 = 0, the model 

becomes

• Example 2.  yt = 0 + 1yt−1 + 2Dt + t

– Dt = 1 if t ≥ t* and Dt = 0 otherwise. If the break date t* is 
unknown, t* is an unidentified nuisance parameter. 

• Example 3: yt = 0+1/[1 + exp(−γyt−1)] + t.
– if  is unknown, a test for linearity implies γ = 0 so that yt = 
0 + 1/2 + t (since exp(0) = 1).

– Similarly if 1 = 0, the model becomes yt = 0 + t so that 
is not identified in that its value is irrelevant. 

AETS 3rd. edition 30
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• In a 2-parameter model the log likelihood function can be 
written solely as a function of 1 and 2:

• ࣦ(₁, ₂)
Call ࣦa(₁, ₂) this maximized value under the alternative.

• Call ࣦn(₁* , ₂) the restricted value under the null ₁ = 
₁*

• Let r = 2[ࣦa(₁, ₂) − ࣦn(₁* , ₂)] whch should equal 
zero.

• If ₂ is not identified under the null hypothesis 
• r = 2[ࣦa(₁, ₂) − ࣦn(₁*)]

which depends on ₂
r does not have a standard 2 distribution

AETS 3rd. edition 31
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Inference

• Inference on the coefficients in a threshold model is not 
straightforward since it was necessary to search for . Under 
the null of linearity  is not identified.

• The t-statistics yield only an approximation of the actual 
significance levels of the coefficients. The problem is that the 
coefficients on the various ut-i are multiplied by It or (1It) 
and that these values are dependent on the estimated value of 
. 

• The percentile and bootstrap t methods can be used
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Hansen’s (1997) supremum test. 

• You cannot perform a traditional F-test. 
• To use Hansen’s (1997) bootstrapping method, you need to draw T

normally distributed random numbers with a mean of zero and a 
variance of unity; let et denote this set of random numbers. You 
treat et as the dependent variable. Regress et on the actual values of 
yt–i to obtain an estimate of SSRr called SSRr

*. 
• For each potential value of  regress et on Ityt–1 and (1 – It)yt–1 [i.e., 

estimate a regression in the form et = Ityt–1 + (1 – It)yt–1] and use 
the regression providing the best fit. Call the sum of squared 
residuals from this regression SSRu

*. Use these two sums of squares 
to form

• Repeat this process several thousand times to obtain the distribution 
of F*. 
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Threshold Regression Models

• yt = a0 + (a1 + b1It)xt + t

where It = 1 if yt–d >  and It = 0 otherwise. 

• Pretesting for a TAR Model

However, the F-statistic needs to be bootstrapped. (see 
Hansen above)
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TAR Models and Endogenous Breaks

• The threshold model is equivalent to a model with a structural 
break. The only difference is that in a model with structural 
breaks, time is the threshold variable.

• Carrasco (2002) shows that the usual tests for structural 
breaks (i.e., those using dummy variables) have little power if 
the data are actually generated by a threshold process
– However, a test for a threshold process using yt-d as the 

threshold variable has power to detect both threshold 
behavior and structural change. Even if there is a single 
structural break at time period t, using yt-d as the threshold 
variable will mimic this type of behavior. 

– As such, she recommends using the threshold model as a 
general test for parameter instability.
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Asymmetric Monetary Policy

• Consider the linear Taylor Rule
it = 0.269 + 0.464t + 0.345yt + 0.810it-1

(1.47)   (6.05)       (5.16)     (21.83)

AIC = –27.72 and SBC = –16.85
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The TAR Taylor Rule
• Since we do not know the delay factor, we can estimate four threshold 

regressions with πt-1, πt-2, yt-1 and yt-2 as the threshold variables

it = 1.421 + 1.051t + 0.469yt + 0.374it-1 when πt-2  3.527
(3.15)   (10.55)      (6.22)     (5.74)

and 

it = –0.456 + 0.232t + 0.302yt + 0.959it-1 when πt-2 < 3.527
(–1.40)  (1.88)   (3.77)     (24.55)

 τ SSR AIC BIC 
πt-1 3.527 50.80 –70.55 –46.08 
πt-2 3.668 50.42 –71.39 –46.93 
yt-1 –1.183 63.97 –44.73 –20.26 
yt-2 –1.565 53.51 –64.94 –40.47 
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Capital Stock Adjustment with Multiple Thresholds

• For our purposes, the key variables in the Boetel, Hoffman 
and Liu (2007) model are

Kt – Kt-1 = 4569 + 6360 I1t + 6352 I2t + 452pHt-1 – 2684pFt-1 + … 
(3.30)   (5.59)       (5.20)   (1.84)       (–3.66)  

• where: Kt is the size of the breeding stock, pHt-1 is a measure of the 
output price of hogs, and pFt-1 is a measure of the price of feed. The 
indicators functions are such that I1t = 1 if pHt-1 > τhigh = 1.1185 and 
I2t = 1 if pHt-1 < τlow = 1.1105. The use of lagged values for the 
dependent variables is designed to reflect a one period delay 
between the time of the investment decision and its realization.

– allowing all variables to have asymmetric effects on Kt – Kt-1 would entail estimating a 
large number of parameters with a consequent loss of degrees of freedom. 
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Capital Stock Adjustment with Multiple Thresholds II

• … the three regimes are distinguished by pHt-1 relative to two 
threshold values. 

• when pHt-1 is between τhigh and τlow, I1t and I2t = 0 so that the 
intercept is 4569. 

• when pHt-1 > τhigh, I1t = 1 the intercept is 10929 and when pHt-1
< τlow, I2t = 1 the intercept is 8. 

• Thus, there is a high-, sluggish- and disinvestment regime 
whose presence is dependent on the value of pHt-1. 

• It would be a mistake to conclude that the slope coefficient 
452 measures the full effect of a price change on net 
investment. When the value of pHt-1 crosses one of the 
thresholds, the change in investment is enhanced since the 
intercept changes along with the price. Also note that price 
changes within the interval τhigh to τlow, will little effect on 
investment. 
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Smooth Transition Models

• In some instances, it may not be reasonable to assume that there are 2 
pure regimes:
– Multi-regime TAR model
– It is possible to assume that the transition is smooth

• Smooth transition autoregressive (STAR) models allow the 
autoregressive parameters to change slowly:
– yt = α0 + α1yt-1 + β1yt-1f [ yt-1 - μ ] + εt

where: f [ ] is a continuous function.
Typically: 
f(0) = 1 and f(±) = 0 (as in a density function).
when yt-1 = μ, autoregressive decay is α1 + β1 and when |yt-1 - μ| is 

large, decay is α1. 
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The Logistic Smooth Transition Autoregressive  (LSTAR) 
Model
• The LSTAR model generalizes the standard autoregressive model to allow 

for a varying degree of autoregressive decay. 

• In the limit as   0 or , the LSTAR model becomes an AR(p) model 
since each value of θ is constant. 

• For intermediate values of , the degree of autoregressive decay depends 
on the value of yt-1. As yt-1  - , θ  0 so that the behavior of yt is given 
by 0 + 1yt-1 + … + pyt-p + t. As yt-1  + , θ  1 so that the behavior 
of yt is given by (0 + 0) + (1 + 1) yt-1 + … + (p + p) yt-p + t. 

0 0
1 1

( )
p p

t i t i i t i t
i i

y y y      
 

     

  1
1[1 exp ]t= + - y c    
  and γ > 0 is a scale parameter
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Pretesting for an LSTAR Model

AETS 3rd. edition 43

1 1[1 exp( ( ))] [1 exp( )]t d t dy c h   
       

For the LSTAR model:

Use a third-order Taylor series approximation of  with respect to ht–d evaluated 
ht–d = 0. Of course, this is identical to evaluating the expansion at  = 0. 

 / ht–d exp(–ht–d)/[1 + exp(–ht–d)]2 1/4

2nd deriv. exp(–ht–d)[1 – exp(–ht–d)]/[1 + exp(–ht–d)]3 0

3rd deriv exp(–ht–d)[1+exp(–2ht–d) – 4exp(–ht–d)]/[1 + exp(–ht–d)]4 –1/8

3tdh

yt = 0 + 1yt–1 + … + pyt–p + (0 + 1yt–1 + … + pyt–p )(1ht–d + 3 (ht-d)3) + t

Because ht–d depends only on the value of yt–d, we can write the model in the more 
compact form:
can test for the presence of LSTAR behavior by estimating an auxiliary regression: 

et = a0 + a1yt–1 + … + apyt–p + a11yt–1yt–d + … + a1pyt–pyt–d + a21yt–1 + … + a2pyt–1
+ a31yt–1 + … + a3pyt–p + t. (7.21)



Copyright © 2015 John, Wiley & Sons, Inc. All rights reserved.

The ESTAR Model

• The exponential form of the model (ESTAR) uses (7.19), but 
replaces (7.20) with

 = 1 – exp [ (yt–1 – c)2]     > 0.

Note that for an ESTAR model Timo’s test has a quadratic term 
but not a cubic term
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Pretesting for an ESTAR Model

AETS 3rd. edition 46

Let  be:  = 1 – exp(–h2t‐d) so that ht‐d = 1/2(yt–d – c)

2
t dh  )

Now, the partial derivatives are given by: 

       Equals                          Evaluated at ht–d = 0 

 / ht–d  2ht–d exp(– 2
t dh  ) 0 

2 2/ t dh    2exp(– 2
t dh  ) – 4 2

t dh  exp(– 2
t dh  ) 2 

3 3/ t dh    –12htdexp(– 2
t dh  ) + 8 3

t dh  exp( 2
t dh  ) 0 
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Teräsvirta’s (1994) Pretest

The key insight in Teräsvirta (1994) is that the auxiliary equation for 
the ESTAR model is nested within that for an LSTAR model. If the 
ESTAR is appropriate, it should be possible to exclude all of the terms 
multiplied by the cubic expression  from the Taylor series expansin. 
Hence, the testing procedure follows these steps:
• STEP 1: Estimate the linear portion of the AR(p) model to 

determine the order p and to obtain the residuals {et}. 
• STEP 2: Estimate the auxiliary equation (7.21). Test the 

significance of the entire regression by comparing TR2 to the 
critical value of 2. If the calculated value of TR2 exceeds the 
critical value from a 2 table, reject the null hypothesis of linearity 
and accept the alternative hypothesis of a smooth transition model. 
(Alternatively, you can perform an F-test). 

• STEP 3: If you accept the alternative hypothesis (i.e., if the model 
is nonlinear), test the restriction a31 = a32 =  = a3n = 0 using an F-
test. If you reject the hypothesis a31 = a32 =  = a3n = 0, the model 
has the LSTAR form. If you accept the restriction, conclude that the 
model has the ESTAR form. 
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Estimation Issues
• Many of the numerical methods used to estimate the parameter values 

have difficulty in simultaneously finding  and c. 
– It is crucial to provide the numerical routine with very good initial 

guesses. 
– Estimate  using a grid search. Fix  at its smallest possible value and 

estimate all of the remaining parameters using NLLS. Slightly increase 
the value of  and reestimate the model. Continue this process until the 
plausible values of  are exhausted. Use the value of  yielding the best 
fit. 

– If  is large and convergence to a solution  is a problem, it could be 
easier to estimate a TAR model instead of the LSTAR model. 

– Terasverta (1994) notes that rescaling the expressions in  can aid in 
finding a numerical solution.  For example, with an LSTAR model, 
standardize by dividing exp[(yt-d  c)] by the standard deviation of 
the {yt} series. For an ESTAR model, standardize by dividing 
exp[(yt-d  c)2] by the variance of the {yt} series. In this way, the 
threshold value c is measured in standardized units so that a reasonable 
value for the initial guess (e.g., c = 1 standard deviation) can be readily 
made. 
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Michael, Nobay, and Peel (1997)

• yt = 0.40yt–1 + [1 – exp(–532.4(yt–1 – 0.038)2] (–yt–1

+ 0.59yt–2 + 0.57yt–4 – 0.017)

The point estimates imply that when the real rate is near 
0.038, there is no tendency for mean reversion since a1 = 
0. However, when (yt–1 – 0.038)2 is very large, the speed of 
adjustment coefficient is quite rapid. Hence, the 
adjustment of the real exchange rate is consistent with the 
presence of transaction costs. 
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11. UNIT ROOTS AND NONLINEARITY

• yt = It1(yt–1 – ) + (1 – It)2(yt–1 – ) + t (7.30)

1

1

1
0

t
t

t

if y
I

if y








  

STEP 1: If you know the value of  (for example  = 0), estimate (7.30). 
Otherwise, use Chan’s method: select the value of  from the regression 
containing the smallest value for the sum of squared residuals. 
STEP 2: If you are unsure as to the nature of the adjustment process, repeat 
Step 1 using the M‐TAR model. 
STEP 3: Calculate the F‐statistic for the null hypothesis 1 = 2 = 0. For the TAR 
model, compare this sample statistic with the appropriate critical value in 
Table G. 
STEP 4: If the alternative hypothesis is accepted (i.e., if there is an attractor), 
it is possible to test for symmetric versus asymmetric adjustment since the 
asymptotic joint distribution of 1 and 2 converges to a multivariate normal. 



Copyright © 2015 John, Wiley & Sons, Inc. All rights reserved.

Old School versus New School
‘Old School’ forecasting techniques, such as exponential 

smoothing and the Box-Jenkins methodology, do not attempt 
to explicitly model or to estimate the breaks in the series. 
– Exponential smoothing: place relatively large weights on the 

most recent values of the series. 
– The Box-Jenkins: first-difference or second difference the series 

in order to control for the lack of mean reversion. 
• Differencing can be chosen by the autocorrelation function 

or by some type of Dickey-Fuller test. 
‘New School’ forecasters attempt to estimate the number and 

magnitudes of the breaks. Given that the breaks are well-
estimated, it is possible to control for the regime shifts when 
forecasting. 
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Figure 1: A Persistent Series with Two Breaks
Panel a: The Series and its Mean
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Panel b: Forecasts From Exponential Smoothing
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Panel d: Forecasts From an AR(1,1)
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Exponential forecasts place a relatively large weight on the most recent 
values of the series and quickly captures the mean shift.
Panel d estimates the series in first-differences to remove the effects of 
the level-shifts from the series. 
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Endogenous Structural Breaks
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Equation (7.34) is a partial break model where the break is assumed to affect only 
the intercept whereas (7.35) is a pure break model in that all parameters are 
allowed to change. You can use the Andrews and Ploeberger test (1994) 

Recall that an endogeneous break model is a threshold model with time as the 
threshold variable. As such, you can estimate (7.34) or (7.35) by performing a grid 
search for the best-fitting break date. The test is feasible since the selection of the 
best fitting regression amounts to a supremum test.

With the sample sizes typically used in applied work, it is standard to use Hansen’s 
(1997) bootstrapping test for a threshold model.
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Bai and Peron: Multiple Breaks
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Bai and Perron develop a supremum test for the null hypothesis of no 
structural change (m = 0) versus the alternative hypothesis of m = k
breaks.

The second method of selecting the number of breaks is to use a 
sequential test.
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Supremum

Estimate models for every possible combination of breaks 
(given the trimming and minimum break size) and select the 
best fitting combination of break dates. 

The appropriate F-statistic, called the F(k; q) statistic, is 
nonstandard; the critical values depend on the number of 
breaks, k, and the number of breaking parameters, q. 

If the null hypothesis of no breaks is rejected, they select the 
actual number of breaks using the SBC. For q = 1, 2, and 3, 
the 95% critical for 1, 2, and 5 breaks are: 

q  k = 1  k = 2 k = 5 UDmax
1   9.63   8.78   6.69 10.17
2 12.89 11.60   9.12 13.27
3 15.37 13.84 11.15 16.82
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Sequential Method

• Begin with the null hypothesis of no-breaks versus the alternative 
of a single break. If the null hypothesis of no breaks is rejected, 
proceed to test the null of a single break versus two breaks, and so 
forth. 

• The method is sequential in that the test for break l + 1 takes the 
first l breaks as given. At each stage, the so-called sup F(l+1| l)
statistic is calculated as the maximum F-statistic for the null 
hypothesis of no additional against the alternative of one additional 
break. For q = 1, 2, and 3, the 95% critical for = 0, 1, 2, and 5 are: 

q  = 0    = 1   = 2   = 4 
1   9.63 11.14   12.16 13.45
2 12.89 14.50 15.42 16.61
3 15.37 17.15 17.97 19.23
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Fourier Breaks (see www.time-series.net)

A simple modification of the standard autoregressive 
model is to allow the intercept to be a time-dependent 
function

Although (1) is linear in {yt}, the specification is reasonably 
general in that d(t) can be a deterministic polynomial 
expression in time, a p-th order difference equation, a 
threshold function, or a switching function.  
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UDmax

it also seems reasonable to test the null of no breaks 
against the alternative of some breaks. If the largest of 
the F(k; q) statistics for k = 1, 2, 3 … exceeds the 
UDmax statistic reported above, you can conclude 
that there are some breaks and then go on to select 
the number using the SBC.
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The Fourier Approximation

Under very weak conditions, the behaviour of almost any function can 
be exactly represented by a sufficiently long Fourier series:

Note that the linear specification emerges as the special case in which 
all values of si and ci are set equal to zero.

Thus, instead of positing a specific nonlinear model, the specification problem 
becomes one of selection the most appropriate frequencies to include. 
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Logistic Breaks

yt = 0 + 1yt–1 +  + pyt–p +  [0 + 1yt–1 +  + pyt–p] + t

 = [1 + exp((t  t*))]1
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Figure 7.14 A Simulated LSTAR Break
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