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Endnotes to Chapter 1 

1. Another possibility is to obtain the forward-looking solution. Since we are dealing with 
forecasting equations, forward looking solutions are not important for our purposes. Some of the 
details concerning forward-looking solutions are included in the Supplementary Manual 
available on the Wiley website or my website.  

2. Alternatively, you can substitute (1.26) into (1.17). Note that when εt is a pure random 
disturbance, yt = a0 + yt–1 + εt is called a random walk plus drift model. 

3. Any linear equation in the variables z1 through zn is homogeneous if it has the form a1z1 + a2z2 + 
… + anzn = 0. To obtain the homogeneous portion of (1.10), simply set the intercept term a0 and 
the forcing process xt equal to zero. Hence, the homogeneous equation for (1.10) is yt = a1yt–1 + 
a2yt–2 + … + anyt−n. 

4. If b > a, the demand and supply curves do not intersect in the positive quadrant. The assumption 
a > b guarantees that the equilibrium price is positive. 

5. For example, if the forcing process is xt = εt + b1εt–1 + b2εt–2 + …, the impact multiplier is the 
partial derivative of yt with respect to εt. 

  



 
 

Section 1.1 
Appendix 1.1: Imaginary Roots and de Moivre’s Theorem 

Consider a second-order difference equation yt =  a1yt–1 + a2yt–2 such that the discriminant d is 
negative [i.e., d = a1

2 + 4a2 < 0]. From Section 6, we know that the full homogeneous solution 
can be written in the form 

   yt
h  = A1a1

t + A2a2
t  (A1.1)  

where the two imaginary characteristic roots are 

  a1 = (a1 + i d− )/2 and a2 = (a1 – i d− )/2 (A1.2) 

 The purpose of this Section is to explain how to rewrite and interpret (A1.1) in terms of 
standard trigonometric functions. You might first want to refresh your memory concerning two 
useful trig identities. For any two angles θ1 and θ2, 

sin(θ1 + θ2) = sin(θ1)cos(θ2) + cos(θ1)sin(θ2) 

    cos(θ1 + θ2) = cos(θ1)cos(θ2) – sin(θ1)sin(θ2)    (A1.3) 

 If θ1 = θ2, we can drop subscripts and form 

                                       sin(2θ) = 2sin(θ )cos(θ )   

                                       cos(2θ) = cos(θ )cos(θ ) – sin(θ )sin(θ ) (A1.4) 

 The first task is to demonstrate how to express imaginary numbers in the complex plane. 
Consider Figure A1.1 in which the horizontal axis measures real numbers and the vertical axis 
measures imaginary numbers. The complex number a + bi can be represented by the point a 
units from the origin along the horizontal axis and b units from the origin along the vertical axis. 
It is convenient to represent the distance from the origin by the length of the vector denoted by r. 
Consider angle θ in triangle 0ab and note that cos(θ) = a/r and sin(θ) = b/r. Hence, the lengths a 
and b can be measured by 

a = r cos(θ ) and b = r sin(θ ) 

 

 In terms of (A1.2), we can define a = a1/2  and b= / 2d− . Thus, the characteristic roots 
a1 and a2 can be written as:  

a1 = a + bi = r[ cos(θ ) + i sin(θ )] 

 

 a2 = a – bi = r[ cos(θ ) – i sin(θ )] (A1.5) 



 
 

 The next step is to consider the expressions a1
t and a2

t. Begin with the expression a1
2 

and recall that i2 = –1: 

  

 

 

 

 

 

 

 

  

 

  

  

 

a1
2 = {r[ cos(θ ) + i sin(θ )]}{r[ cos(θ ) + i sin(θ )]} 

                        =   r2[ cos(θ)cos(θ) – sin(θ)sin(θ) + 2i sin(θ)cos(θ)] 

From (A1.4), 

a1
2 = r2[cos(2θ) + i sin(2θ)] 

 If we continue in this fashion, it is straightforward to demonstrate that 

a1
t = rt[cos(tθ) + i sin(tθ)]   and a2

t = rt[cos(tθ) – i sin(tθ)] 

 Since yt
h is a real number and a1 and a2 are complex, it follows that A1 and A2 must be 

complex. Although A1 and A2 are arbitrary complex numbers, they must have the form 

  A1 = B1[ cos(B2) + i sin(B2) ] and A2 = B1[ cos(B2) – i sin(B2) ] (A1.7) 
where B1 and B2 are arbitrary real numbers measured in radians.  

 In order to calculate A1(a1
t),  use (A1.6) and (A1.7) to form 

 A1a1
t =  B1[ cos(B2) + i sin(B2) ]rt[cos(tθ) + i sin(tθ)]     

         =  B1rt[ cos(B2)cos(tθ) – sin(B2)sin(tθ) + i cos(tθ)sin(B2) + i sin(tθ)cos(B2) ] 

 Using (A1.3), we obtain 
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Figure A1.1 Graphical Representation of Complex Numbers 



 
 

 A1a1
t = B1rt[ cos(tθ + B2) + i sin(tθ + B2) ] (A1.8) 

 You should use the same technique to convince yourself that 

 A2a2
t = B1rt[ cos(tθ + B2) – i sin(tθ + B2) ] (A1.9) 

 Since the homogeneous solution yt
h is the sum of (A1.8) and (A1.9), 

 yt
h = B1rt[ cos(tθ + B2) + i sin(tθ + B2) ] + B1rt[ cos(tθ + B2) – i sin(tθ + B2) ]  (A1.10) 

     = 2B1rtcos(tθ + B2)     

 Since B1 is arbitrary, the homogeneous solution can be written in terms of the arbitrary 
constants B2 and B3 

 h
ty  = B3rtcos(tθ + B2) (A1.11) 

 Now imagine a circle with a radius of unity superimposed on Figure A1.1. The stability 
condition is for the distance r = 0b to be less than unity. Hence, in the literature it is said that the 
stability condition is for the characteristic root(s) to lie within this unit circle. 

  



 
 

Section 1.2 
Appendix 1.2: Characteristic Roots in Higher-Order 

Equations 
The characteristic equation to an nth-order difference equation is  

  0...2
2

1
1 =−−− −−

n
nnn aaa aaa  (A1.12) 

 As stated in Section 6, the n values of a which solve this characteristic equation are 
called the characteristic roots. Denote the n solutions by a1, a2, … an. Given the results in 
Section 4, the linear combination A1a1

t + A2a2
t + … + Anan

t is also a solution to (A1.12) 

 A priori, the characteristic roots can take on any values. There is no restriction that they 
be real versus complex nor any restriction concerning their sign or magnitude. Consider  the 
possibilities: 

1. All the ai are real and distinct. There are several important subcases. First suppose that each 
value of ai is less than unity in absolute value. In this case, the homogeneous solution (A1.12) 
converges since the limit of each at

i equals zero as t approaches infinity. For a negative value of 
ai, the expression at

i is positive for even values of t and negative for odd values of t. Thus, if any 
of the ai are negative (but less than one in absolute value), the solution will tend to exhibit some 
oscillation. If any of the ai are greater than unity in absolute value, the solution will diverge.  

1. All of the ai are real but m ≤  n of the roots are repeated. Let the solution be such that a1 = a2 
= … = am. Call the single distinct value of this root α and let the other n-m roots be denoted by 
am+1 through an. In the case of a second-order equation with a repeated root, you saw that one 
solution was A1α t and the other was A2tα t. With m repeated roots, it is easily verified that tα t, 
t2α t, … , tm–1α t are also solutions to the homogeneous equation. With m repeated roots, the 
linear combination of all these solutions is  

2 1
1 2 3 1 1... ...t t t m t t t

m m m n nA A t A t A t A Aαααααα     −
+ ++ + + + + + +           

2. Some of the roots are complex. Complex roots (which necessarily come in conjugate pairs) have 

the form ai ± iθ, where ai and θ are real numbers and i is defined to be 1− . For any such pair, 
a solution to the homogeneous equation is: A1(a1 + iθ)t + A2(a1-iθ)t where A1 and A2 are arbitrary 
constants. Transforming to polar coordinates, the associated two solutions can be written in the 
form: b  1rtcos(θt + b 2) with arbitrary constants b 1 and b 2. Here stability hinges on the 

magnitude of rt; if r  < 1, the system converges. However, even if there is convergence, 

convergence is not direct because the sine and cosine functions impart oscillatory behavior to the 
time path of yt. For example, if there are three roots, two of which are complex, the homogeneous 
solution has the form 

b 1rt cos(θt + b 2) + A3(a3)t 



 
 

 

Stability of Higher-Order Systems 
From equation (A1.12) of Section 1.2, the characteristic equation of an nth-order difference 
equation is  

  0...2
2

1
1 =−−− −−

n
nnn aaa aaa                       (A1.12) 

Denote the n characteristic roots by a1, a2, ... an. Given the results in Section 4, the linear 
combination A1a1

t + A2a2
t + ... + Anan

t is also a solution to (A1.12).  

 In practice, it is difficult to find the actual values of the characteristic roots. Unless the 
characteristic equation is easily factored, it is necessary to use numerical methods to obtain the 
characteristic roots. However, for most purposes it is sufficient to know the qualitative properties 
of the solution; usually it is sufficient to know whether all of the roots lie within the unit circle. 
The Schur Theorem gives the necessary and sufficient conditions for stability. Given the 
characteristic equation of (A1.12), the theorem states that if all of the n determinants below are 
positive, the real parts of all characteristic roots are less than one in absolute value. 
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To understand the way each determinant is formed, note that each can be partitioned into four 

subareas. Each subarea of ∆i is a triangular i× i matrix. The northwest subarea has the value 1 on 
the diagonal and all zeros above the diagonal. The subscript increases by one as we move down 
any column beginning from the diagonal. The southeast subarea is the transpose of the northwest 
subarea. Notice that the northeast subarea has an on the diagonal and all zeros below the 
diagonal. The subscript decreases by one as we move up any column beginning from the 
diagonal. The southwest subarea is the transpose of the northeast subarea. As defined above, the 
value of a0 is unity.  

   Special Cases: As stated above, the Schur Theorem gives the necessary and sufficient 
conditions for all roots to lie in the unit circle. Rather than calculate all of these determinants, it 
is often possible to use the simple rules discussed in Section 6. Those of you familiar with matrix 
algebra may wish to consult Samuelson (1941) for formal proofs of these conditions.  

  



 
 

 

Section 1.3: Forward Versus Backward Solutions 
This Material Follows Section 9 of Chapter 1 
Note that the equations are numbered consecutively following those in the text.  

 As suggested by equation (1.82), there is a forward-looking solution to any linear 
difference equation. This text will not make much use of the forward-looking solution since 
future realizations of stochastic variables are not directly observable. However, knowing how to 
obtain forward-looking solutions is useful for solving rational expectations models. Let's return 
to the simple iterative technique to consider the forward-looking solution to the first-order 
equation yt = a0 + a1yt-1 + εt. Solving for yt-1, we obtain 
                                                                          

0 1 1-1 ( ) / /t tt a a y ay ε= - + +                                             (1.83)  
 

Updating one period 

                                                   yt = − (a0 + εt+1)/a1 + yt+1/a1                                                                 (1.84)   

Since yt+1 = (yt+2 - a0 - εt+2)/a1, begin iterating forward:  
 

                       yt = −(a0 + εt+1)/a1 + (yt+2 − a0 − εt+2)/(a1)2  

                           = −(a0 + εt+1)/a1 − (a0 + εt+2)/(a1)2 + yt+2/(a1)2 

                                =  −(a0 + εt+1)/a1 − (a0 + εt+2)/(a1)2 + (yt+3 − a0 − εt+3)/(a1)3 

Therefore, after n iterations, 

0 1 1 1
1 1

/
n n

i i n
t i t nt

i i
a a a y ay ε− −

+ +
= =

= − − +∑ ∑                                       (1.85) 

If we maintain thata1 < 1, this forward-looking solution will diverge as n gets infinitely 
large. However, if a1 > 1, the expression a1

-n goes to zero while −a0(a1
-1 + a1

-2 + a1
-3 + ... ) 

converges to a0/(1−a1). Hence, we can write the forward-looking particular solution for yt as 

0 1 1
1

/(1 )
n

i
t it

i
a a ay ε−

+
=

= − − ∑                                                (1.86) 

Note that (1.86) is identical to (1.82). The key point is that the future values of the   
disturbances affect the present. Clearly, if a1 > 1 the summation is convergent so that (1.86) is 
a legitimate particular solution to the difference equation. Given an initial condition, a stochastic 
difference equation will have a forward- and a backward-looking solution. To illustrate the 
technique using lag operators, we can write the particular solution to yt = a0 + a1yt-1 + εt as (a0 + 
εt)/(1-a1L). Now multiply the numerator and denominator by -a1

-1L-1 to form 
1 1 1 1

0 1 1 1/(1 ) /(1 )t ty a a a L a Lε− − − −= − − −  



 
 

so that 

    0 1
1

/(1 ) i
t i t i

i
y a a a ε

∞
−

+
=

= − − ∑    (1.87) 

More generally, we can always obtain a forward-looking solution for any nth-order equation. 
(For practice in using the alternative methods of solving difference equations, try to obtain this 
forward looking solution using the method of undetermined coefficients.) 

Properties of the Alternative Solutions 
The backward- and forward-looking solutions are two mathematically valid solutions to any n-th 
order difference equation. In fact, since the equation itself is linear, it is simple to show that any 
linear combination of the forward- and backward-looking solutions is also a solution. For 
economic analysis, however, the distinction is important since the time paths implied by these 
alternative solutions are quite different. First consider the backward looking solution. If a1 < 
1, the expression a1

i converges towards zero as i → ∞. Also, notice that the effect of εt-i on yt is 
a1

i; if a1 < 1, the effects of the past εt also diminish over time. Suppose instead that a1 > 1; 
in this instance, the backward-looking solution for yt explodes.  

The situation is reversed using the forward solution. Here, if a1 < 1, the expression a1
-i 

becomes infinitely large as i approaches ∞. Instead, if a1 > 1, the forward- looking solution 
leads to a finite sequence for {yt}. The reason is that a1

-i converges to zero as i increases. Note 
that the  effect of εt+i on yt is a1

-i; if a1 > 1, the effects of the future values of εt+i have a 
diminishing influence on the current value of yt.  

From a purely mathematical point of view, there is no "most appropriate" solution. However, 
economic theory may suggest that a sequence be bounded in the sense that the limiting value for 
any value in the sequence is finite. Real interest rates, real per capita income, and many other 
economic variables can hardly be expected to approach either plus or minus infinity. Imposing 
boundary restrictions entails using the backward-looking solution if a1 < 1 and using the 
forward-looking solution if a1 > 1. Similar remarks hold for higher-order equations.  

An Example: Cagan's Money Demand Function 
Cagan's model of hyperinflation provides an excellent example of illustrating the appropriateness 
of forward- versus backward-looking solutions. Let the demand for money take the form 

 

mt − pt = a − b ( 1
e
tp + − pt )     b > 0                            (1.88) 

 
where:  mt = logarithm of the nominal money supply in t 

       pt  = the logarithm of price level in t 

      1
e
tp + = the logarithm of the price level expected in period t+1 

The key point of the model is that the demand for real money balances (mt - pt) is negatively 
related to the expected rate of inflation ( 1

e
tp +  − pt). Because Cagan was interested in the 



 
 

relationship between inflation and money demand, all other variables were subsumed into the 
constant a. Since our task is to work with forward-looking solutions, let the money supply 
function simply be the process: 

mt = m + εt 
where m = the average value of the money supply 

      εt = a disturbance term with a mean value of zero 

As opposed to the cobweb model, let individuals have forward-looking perfect foresight so 
the expected price for t+1 equals the price that actually prevails: 

1
e
tp +  = pt+1 

Under perfect foresight, agents in period t are assumed to know the price level in t+1. In the 
context of the example, agents are able to solve difference equations and can simply "figure out" 
the time path of prices. Thus, we can write the money market equilibrium condition as 

m + εt − pt = a − b ( pt+1 − pt ) 
or 

     pt+1 − (1+1/b)pt = −(m − a) /b − εt/b                                         (1.89)  

 

For practice, we use the method of undetermined coefficients to obtain the particular 
solution. (You should check your abilities by repeating the exercise using lag operators.)  We use 
the forward-looking solution because the coefficient (1+1/b) is greater than unity in absolute 
value. Try the challenge solution 

εα i+ti
=i

p
t   + b = p     ∑

∞

0
0  

Substituting this challenge solution into the above, we obtain 

10 0
0 0

- -1- t
i t i i t i

i i

  m      b b     α εb
α ε α ε

b b

∞ ∞

+ + +
= =

 +
+ + = 

 
∑ ∑                       (1.90) 

For (1.90) to be an identity for all possible realizations of {εt}, it must be the case that 
 

b0 - b0(1+b)/b = (a - m)/b    ⇒  b0      =  m - a 

                                  -a0(1+b)/b = -1/b        ⇒  a0   =  1/(1+b) 

                                   a0 - a1(1+b)/b = 0        ⇒  a1    =  b/(1+b)2 
                                          . 

                                     . 

                                     . 

                                  ai - ai+1(1+b)/b = 0        ⇒  ai    =  b 
i/(1+b)i+1 



 
 

 

In compact form, the particular solution can be written as 
1

0

1
1

+i
p

t+it
i=

      = m -  + p
+
βα ε

ββ

∞  
 
 

∑                                           (1.91) 

The next step is to find the homogeneous solution. Form the homogeneous equation pt+1 - 
(1+1/b)pt = 0. For any arbitrary constant A, it is easy to verify that the solution is 

ph
t = A (1+1/b)t 

Therefore, the general solution is 
1

0

1 ( ) (1 1 )
1

+i
t

t+it
i=

= m + + A + /p
+
β

αβ εββ

∞

− ∑                                (1.92) 

If you examine (1.92) closely, you will note that the impulse response function is convergent; 
the expression [b/(1+b)]1+i converges to zero as i approaches infinity. However, the 
homogeneous portion of the solution is divergent. For (1.92) to yield a non-explosive price 
sequence, we must be able to set the arbitrary constant equal to zero. To understand the 
economic implication of setting A = 0, suppose that the initial condition is such that the price 
level in period zero is p0. Imposing this initial condition, (1.92) becomes 

1

0
0

1 ( )
1

+i

i
i=

 = m -  +  + Ap
+
β

α εββ

∞

∑  

Solving for A yields 
1

0
0

1 ( )
1

+i

i
i=

A= + mp
+
β

α εββ

∞

− − ∑  

Thus, the initial condition must be such that 
1

0
0

1 ( )0
1

+i

i
i=

A =    or    = m -  + p
+
β

α εββ

∞

∑                                    (1.93)  

Examine the three separate components of (1.92). The deterministic expression m - a is the 
same type of long-run "equilibrium" condition encountered on several other occasions; a stable 
sequence tends to converge toward the deterministic portion of its particular solution. The second 
component of the particular solution consists of the short-run responses induced by the various εt 
shocks. These movements are necessarily of a short-term duration because the coefficients of the 
impulse response function must decay. The point is that the particular solution captures the overall 
long-run and short-run equilibrium behavior of the system. Finally, the homogeneous solution can 
be viewed as a measure of disequilibrium in the initial period. Since (1.91) is the overall 
equilibrium solution for period t, it should be clear that the value of p0 in (1.93) is the equilibrium 
value of the price for period zero. After all, (1.93) is nothing more than (1.91) with the time 
subscript lagged t periods. Thus, the expression A(1+1/b)t must be zero if the deviation from 
equilibrium in the initial period is zero. 

Imposing the requirement that the {pt} sequence be bounded necessitates that the general 



 
 

solution be 

εβ
β

β
α i+t

i+

=i
t  

+
 +  - m = p ]

1
[1 1

0
∑

∞

 

Notice that the price in each and every period t is proportional to the mean value of the 
money supply; this point is easy to verify since all variables are expressed in logarithms and 
∂pt/∂m = 1. Temporary changes in the money supply behave in an interesting fashion. The 
impulse response function indicates that future increases in the money supply, represented by the 
various εt+i, serve to increase the price level in the current period. The idea is that future money 
supply increases imply higher prices in the future. Forward-looking agents reduce their current 
money holdings, with a consequent increase in the current price level, in response to this 
anticipated inflation.  

Practice question: Consider the Cagan demand for money function: mt - pt = a - b[pt+1 - 
pt]. Show that the backward-looking particular solution for pt is divergent. 

 
Answer:  Using lag operators, rewrite the equation as bpt+1 - (1 + b)pt = a - mt. 
Combining terms yields [1 - (1 + 1/b)L]pt+1 = (a - mt)/b so that lagging by one period 
results in 

 
[1 - (1 + 1/b)L]pt = (a - mt-1)/b 

 
Since b is assumed to be positive, the expression (1 + 1/b) is greater than unity.  Hence, 
the backward-looking solution for pt is divergent.   

 
 

  



 
 

Section 1.4: Practice in Finding Homogeneous Solutions 
Example 1:  The AR(2) case: yt = a0 + 0.5yt-1 + 0.4yt-2  
      

Try yt = A0rt as the homogeneous solution. Hence, substitute yt = A0rt into yt − 0.5yt-1 − 0.4yt-2 = 0 to 
obtain 
   
A0rt  - 0.5A0rt-1 - 0.4A0rt-2 = 0. 
 
There are two solutions for r: r1 = −0.43 and r2 = 0.93. Given the initial conditions, yt-2 = 0 and yt-1 = 2, 
the time path of the series is shown in the figure below.  
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Example 2: Another AR(2) model: yt = a0 + 0.9yt-1 − 0.2yt-2  

      
Again, try yt = A0rt for the solution to the homogeneous part of the equation. Substitute yt = A0rt into 
yt −0.9yt-1 + 0.2yt-2 = 0 to obtain  
 
 A0rt  - 0.9A0rt-1 + 0.2A0rt-2 = 0 
 
There are two solutions for r:  r1 = 0.4 and r2 = 0.5. For the initial conditions given in exercise 1, the 
time path of the series is: 

0 10 20 30
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yt

t
 

Example 3: A third AR(2) model:  yt = .55yt-1 + 0.2yt-2                                                      



 
 

Form the homogeneous equation: 
 

   yt - 0.55yt-1 - 0.2yt-2 = 0 

 
After forming the homogenous equation we check the discriminant (d) to see if the roots will 
be real and distinct or, alternatively, imaginary.  Using our definition of the discriminant, and 
Table 1, we find that d = (0.55)2 + 4(0.2) = 1.1025.  Thus we conclude that because d is 
greater than zero, the roots to this particular equation will be real and distinct. 

Table 1:  Discriminant = d = a1
2 + 4a2 

d > 0 d < 0 

Roots are real and distinct Roots are imaginary 

 

1. We know that the trial solution will have the form 𝑦𝑡 = 𝛼𝑡 and we use this information 
to obtain 
 

𝛼𝑡 − .55𝛼𝑡−1 − .2𝛼𝑡−2 = 0                                      

2. By dividing by 𝛼𝑡−2 we obtain the characteristic equation: 
 

𝛼2 − .55𝛼𝑡 − .2𝛼 = 0                                            
3. We can now compute the two characteristic roots: 

 

𝛼1 = 0.5�𝑎1 + 𝑑1/2� =  .8 𝛼2 = 0.5�𝑎2 − 𝑑1/2� =  −.25 

 

4. The last step is to write out the homogenous solution: 

 

𝐴1(.8)𝑡 + 𝐴2(−.25)𝑡                                                   
 
The following graph shows the time path of this equation for the case in which the arbitrary 

constants equal unity and t runs from 1 to 20. 
 
 



 
 

 
Example 5: An example with complex roots 

 
Let us analyze the homogenous solution to a second-order differential equation with complex 

roots and no initial conditions 
 

𝑦𝑡 =  −1
2
𝑦𝑡−1 −

1
4
𝑦𝑡−2               

 
Calculating the discriminant (d) with 𝑎1 = 1

2
 and 𝑎2 = 1

4
 yields 𝑑 =  −3

4
.  This indicates that 

the characteristic roots to this difference equation will be complex.  The homogenous solution to 
the difference equation will then have the form 𝑦𝑡ℎ =  𝛽1𝑟𝑡cos (𝜃𝜃 + 𝛽2) where 𝑟 =

 �(𝑎1
2

)2 + (𝑖 ∙ 𝑑
1
2

2
)2 and cos 𝜃 =  𝑎1

2𝑟
.  After solving for the values of r and θ we get  1

2
 and 𝜋

3
, 

respectively.  Therefore the homogenous solution is 
𝑦𝑡ℎ =  𝛽1 ∙

1
2𝑡

cos (𝜋
3
𝑡 + 𝛽2)        

 
The following graph shows the time path of the above for the case in which the arbitrary 

constants equal unity and t runs from 1 to 20. 
 

 



 
 

Backward Solution with Stochastic Term 
 
Investigating difference equations with stochastic terms is very important in time-series.  The 

stochastic terms are i.i.d and normally distributed 𝜀𝑡~𝑁(0,𝜎𝜀2).  Let us add a stochastic term, 𝜀𝑡, 
to a Example 3 above. Consider: 

 
yt = 2 + 0.55yt-1 + 0.2yt-2 + 𝜀𝑡              

 
The solution to this second-order difference equation with a stochastic term takes the form 
 

𝑦𝑡 = 𝑐 + ∑ 𝑐𝑖 ∙ 𝜀𝑡−𝑖∞
𝑖=0             

 
where c and ci are constants for all i.  The question now becomes what are the values for these 
constants.  To solve for these constants we will employ the method of undetermined 
coefficients, which is tantamount to equating like terms (according to the stochastic term and its 
lags) on both sides of the equation and solving for the constant in question. 

 
 

𝑐 +  𝑐0𝜀𝑡 + 𝑐1𝜀𝑡−1 + 𝑐2𝜀𝑡−2 + ⋯ = 0.55[𝑐 + 𝑐0𝜀𝑡−1 + 𝑐1𝜀𝑡−2 + 𝑐2𝜀𝑡−3 + ⋯ ] 
 

+0.2[[𝑐 + 𝑐0𝜀𝑡−2 + 𝑐1𝜀𝑡−3 + 𝑐2𝜀𝑡−4 ⋯ ] + 𝜀𝑡 + 2            
 

Now we can start grouping according to the constants 
 

𝑐 = 0.55𝑐 + 0.2𝑐 + 2 
𝑐 =  2

1−0.55−0.2
 = 8 

 
This is the same solution if we were finding the particular solution for this difference 

equation 
 

lim𝑡→∞ 𝑦𝑡= 𝑦� 
𝑦� = 0.55𝑦� + 0.2𝑦� + 2 

𝑦� = 8 
 

The other constant terms can be found in the same manner as c was found 
 

 
𝑐0𝜀𝑡 =  𝜀𝑡 
𝑐0 = 1 

 
𝑐1𝜀𝑡−1 = 0.55𝑐0𝜀𝑡−1 
𝑐1 = 0.55 ∙ 1 = 0.55 

 
𝑐2𝜀𝑡−2 =  0.55𝑐1𝜀𝑡−2 + 0.2𝑐0𝜀𝑡−2 

𝑐2 = 0.55 ∙ 0.55 + 0.2 ∙ 1 =  0.5025 



 
 

 
𝑐3𝜀𝑡−3 = 0.55𝑐2𝜀𝑡−3 + 0.2𝑐1𝜀𝑡−3 

𝑐3 = 0.55 ∙ 0.5025 + 0.2 ∙ 0.55 =  0.386375 

⋮ 
𝑐𝑖𝜀𝑡−𝑖 =  0.55𝑐𝑖−1𝜀𝑡−𝑖 + 0.2𝑐𝑖−2𝜀𝑡−𝑖 ⇒ 𝑐𝑖 = 0.55𝑐𝑖−1 + 0.2𝑐𝑖−2 

 
This last equation should look familiar.  It is of the same form as our non-stochastic AR(2) 

model example.  Therefore it should have the same form of homogenous solution as found in 
Example 3 above.  

 
𝑐𝑖 = 𝐴1(0.8)𝑖 + 𝐴2(−0.25)𝑖 

 

A Forward-Looking Model with a Stochastic Term 
 
 Consider the model:  yt = 2 yt-1 + εt. 

 
It should be clear that the backward looking-solution is explosive. However, we can obtain 

the forward-looking solution as follows. Consider: 
 
yt-1 = 0.5yt – 0.5εt   
 
and updating one period: 
 
yt = 0.5yt+1 – 0.5εt+1   
 
Continuing to iterate forward: 
 
yt = 0.5yt+1 – 0.5εt+1  = 0.5[0.5yt+2 – 0.5εt+2]   
 
   = 0.25yt+2 – 0.25εt+2  – 0.5εt+1   
 
You should be able to convince yourself that the continued forward iteration yield (0.5)iyt+i. 

so that the coefficient on the “future” values of yt+i converge to zero. This type of model is often 
used to model stock prices. Using a well known identity we have the following formula: 

 
Pt = 𝐸𝑡[𝑃𝑡+1]

1+𝑟
 + dt 

 
where Pt is the market price of a stock in period t, dt is the dividend, and r is the one-period 

interest rate. In other words the current price of a stock is equal to the expected price in the next 
period, discounted by the interest rate plus any current dividends.  Let’s look at Pt = 1

1+𝑟
Pt+1 + dt 

more closely. 
 
Again the backwards solution of Pt+1 = (1+r)Pt + (1+r)dt makes no sense.  What about the 



 
 

forward solution?  Using the method of undetermined coefficients we have: 
 
Pt = ∑𝑐𝑖𝑑𝑡+𝑖 =  𝑐0𝑑𝑡 + 𝑐1𝑑𝑡+1 + 𝑐2𝑑𝑡+2 + ⋯ = 1

1+𝑟
(𝑐0𝑑𝑡+1 + 𝑐1𝑑𝑡+2 + 𝑐2𝑑𝑡+3 + ⋯ ) 

 
With, 

𝑐1 =
𝑐0

1 + 𝑟
 

 
𝑐2 =

𝑐0
(1 + 𝑟)2

 

⋮ 
⋮ 

𝑐𝑖 =
𝑐0

(1 + 𝑟)𝑖
 

Therefore, 
 
Pt = 1

1+𝑟
𝐸𝑡[𝑃𝑡+1] + 𝑑𝑡, where dt = d0 + εt 

 
Using our results from above, we can solve for the specific coefficient values using 

substitution.  We know, Pt = c0 + c1dt, and therefore, E[Pt+1] = E[c0 + c1dt+1] 
Using this equality we can now solve for the value of c0 and c1 
 
c0 + c1dt = 1

1+𝑟
(c0 + c1d0) + dt 

 
c0 = 𝑐0+𝑐1𝑑0

1+𝑟
 = c0 = 1

1+𝑟
(c0 + d0) 

 
c1dt = dt  1 = c1 
 
c0 = 1

𝑟
d0 ≈ the value of a perpetuity 

 
Combining terms we are left with a final solution of: 
 
Pt = 𝑑0

𝑟
+  𝑑𝑡 

 
Hence, the market price of the stock is equal to the current dividend plus the present 

discounted value of the dividend stream.  
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Endnotes to Chapter 2 

1. Often, the variance is estimated as 2 1 2ˆ ( 1) ( )tT y yσ −= − −∑ . 

2. As discussed in Appendix 2.1, the estimation of lagged MA coefficients does not entail a loss 
of any usable observations. Hence, the two models are estimated over the same sample period.  

3. Some software programs report the Durbin-Watson test statistic as a check for first-order 
serial correlation. This well-known test statistic is biased toward finding no serial correlation in 
the presence of lagged dependent variables. Hence, it is usually not used in ARMA models.  

4. Some researchers prefer to drop the first observation when adding an additional observation. 
As such, the model is always estimated using a fixed number of observations. A potential 
advantage of this “rolling window” method is that structural change occurring early sample will 
not affect all of the forecasts. Of course, the disadvantage is that some of the data is not used 
when estimating the model.  

5. The details of the X-11 and X-12 procedures are not important for our purposes.  
Respectively, the technical details along with several versions of the seasonal adjustment 
procedures can be downloaded from the Bureau of the Census Web page: 
www.census.gov/srd/www/x12a/ and www.census.gov/srd/www/x13as/. 

6. As formulated, the test can also detect a break in the variance of the error process. Estimation 
of an AR(p) model usually entails a loss of the number of usable observations. Hence, to 
estimate a model using T usable observations it will be necessary to have a total of (T + p) 
observations. Also note that the procedure outlined necessitates that the second subsample period 
incorporate the lagged values tm, tm−1, … tm−p+1.  

 
  



 
 

SECTION 2.1: Appendix 2.1 
ESTIMATION OF AN MA(1) PROCESS 

How do you estimate an MA or an ARMA process? When you estimate a regression using 
ordinary least squares (OLS), you have a dependent variable and a set of independent variables. 
In an AR model, the list of regressors is simply the lagged values of the {yt} series. Estimating 
an MA process is different because you do not know the values of the {εt} sequence. Since you 
cannot directly estimate a regression equation, maximum-likelihood estimation is used. Suppose 
that {εt} is a white-noise sequence drawn from a normal distribution. The likelihood of any 
realization εt is 

2

22

1 exp
22

te
σpσ

 −
 
 

 

Since the εt are independent, the likelihood of the joint realizations ε1, ε2, … , εT is 
2

22
1

1 exp
22

T
t

t

e
σpσ=

 −
 
 

∏  

If you take the log of the likelihood, you obtain 

2 2
2

1

1ln ln(2 ) ln
2 2 2

T

t
t

T TL π σ ε
σ =

−
= − − ∑  

Now suppose that we observe T values of the MA(1) series yt = bεt–1 + εt. The problem is to 
construct the {εt} sequence from the observed values of {yt}. If we knew the true value of b and 
knew that ε0 = 0, we could construct ε1, … , εΤ  recursively. Given that ε0 = 0, it follows that  

           ε1 = y1 
           ε2 = y2 – bε1 = y2 – by1 
           ε3 = y3 – bε2 = y3 – b (y2 – by1 ) 

        ε4 = y4 – bε3 = y4 – b [y3 – b (y2 – by1 ) ] 
 

In general, εt = yt – bεt–1 so that if L is the lag operator 
1

0
/(1 ) ( )

t
i

t t t i
i

y L yε ββ
−

−
=

= + = −∑  

As long as | b | < 1, the values of εt will represent a convergent process. This is the 
justification for the assumption that the MA process be invertible. If  | b | > 1, we cannot 
represent the {εt} series in terms of the observed {yt} series. If we now substitute the solution for 
εt into the formula for the log likelihood, we obtain 

( )
21

2
2

1 0

1ln ln(2 ) ln
2 2 2

T t
i

t i
t i

T TL yπ σ β
σ

−

−
= =

−  = − − − 
 

∑ ∑  

Now that we have expressed ln L in terms of the observable {yt} series, it is possible to select 
the values of b and σ2 that maximize the value of ln L. Unlike OLS, if you actually take the 
partial derivatives of ln L with respect to b and σ2 you will not obtain a simple set of first-order 



 
 

conditions. Moreover, the formula becomes much more complicated in higher-order MA(q) 
processes. Nevertheless, computers can use a number of available search algorithms to find the 
values of b and σ2 that maximize ln L. As indicated in the text, numerical optimization routines 
cannot guarantee exact solutions for the estimated coefficients. Instead, various “hill-climbing” 
methods are used to find the parameter values that maximize ln L. If the partial derivatives of the 
likelihood function are close to zero (so that the likelihood function is flat), the algorithms may 
not be able to find a maximum.  

  



 
 

 

SECTION 2.2: Appendix 2.2 
Model Selection Criteria 

Hypothesis testing is not particularly well suited to testing nonnested models. For example, if 
you wanted to chose between an AR(1) and an MA(2) you could estimate and ARMA(1, 2) and 
then try to restrict the MA(2) coefficients to equal zero. Alternatively, you could try to restrict 
the AR(1) coefficient to equal zero. Nevertheless, the method is unsatisfactory because it 
necessitates estimating the overparameterized ARMA(1, 2) model. Instead, model selection 
criteria, such as the AIC and the SBC, can be used to choose between alternative models. Such 
model selection criteria can be viewed as measures of goodness-of-fit that include a cost, or 
penalty, for each parameter estimated.  

One reason it is not desirable to have an overparameterized model is that forecast error 
variance increases as a result of errors arising from parameter estimation. In other words, small 
models tend have better out-of-sample performance than large models. Suppose that the actual 
data-generating process (DGP) is the AR(1) model:  

 
yt = ayt–1 + εt 

 
If a is known, the one-step-ahead forecast of yt+1 is Etyt+1 = ayt. Hence, the mean squared 

forecast error is Et(yt+1 –  ayt)2 = 2 2
1ttE   ε σ+ = . However, when a is estimated from the data, the 

one-step-ahead forecast of yt+1 is: 

 
Etyt+1 = â yt 

 
where â  is the estimated value of a.   

Hence, the mean squared forecast, or prediction, error is: 

 
MSPE = Et(yt+1 – â yt)2  = Et[ (ayt – â yt) + εt+1 ]2 

 
Since εt+1 is independent of â and yt, it follows that: 

 
Et(yt+1 – â yt)2  = Et[( a – â )yt]2 + σ2 

                                             ≈ Et[( a – â )]2 (yt)2 + σ2   
 
Since Et[( a – â )]2 is strictly positive, parameter uncertainty contributes to forecast error 

variance in that the mean squared forecast error exceeds σ2. The point is that errors in parameter 
estimation contribute to forecast error variance.  Moreover, the more parameters estimated, the 
greater the parameter uncertainty. It is easy to show that the problem is particularly acute in 
small samples. Since var(yt) = σ2 / (1 – a2) and, in large samples, var( â ) = Et[( a – â )]2 ≈ (1 – 
a2)/T, it follows that 



 
 

 
Et[( a – â )]2 (yt)2 + σ2 ≈ [(1 – a2)/T ](1 – a2)–1 σ2 + σ2 

        = [1 + (1/T)]σ2 
 

Thus, as T increases, the MSPE approaches σ2.  

The Finite Prediction Error (FPE) Criterion 
The FPE criterion seeks to minimize the one-step ahead mean squared prediction error. Now 

consider the AR(p) process: 

 
yt = a1yt–1 + … + apyt−p + εt 

 
If you use the argument in the previous section, the MSPE can be shown to be equal to 

 
[1 + (p/T)]σ2 

 
We do not know the true variance σ2. However, σ2 can be replaced by its unbiased estimate 

SSR/(T – p) to get 

 
FPE = [1 + (p/T) ][ SSR/(T-p) ] 

 
Select p so as to minimize FPE. We can use logs and note that ln(1 + p/T) can be 

approximated by p/T. Hence, it is possible to select p to minimize 

 

p/T + ln(SSR) – ln(T - p) 

which is the same as minimizing 

p + Tln(SSR) – Tln(T – p)  

 Since ln(T - p) ≅ lnT – p/T, the problem can be written in terms of selecting p so as to 
minimize 

p + Tln(SSR) – ln(T) + p 
which has the same solution as minimizing 

Tln(SSR) + 2p 

 

The AIC and the SBC 
The more general AIC selects the (1 + p + q) parameters of an ARMA model so as to 

maximize the log likelihood function including a penalty for each parameter estimated: 

 
AIC = –2 ln maximized value of log likelihood + (1 + p + q)/T 



 
 

 
For a given value of T, selecting the values of p and q so as to minimize the AIC is 

equivalent to selecting p and q so as to minimize the sum: 

 
T ln (SSR) + 2(1 + p + q) 

 
Notice that is q = 0 and there is no intercept, this is the result obtained using the FPE. 

Minimizing the value of the AIC implies that each estimated parameter entails a benefit and a 
cost. Clearly, a benefit of adding another parameter is that the value of SSR is reduced. The cost 
is that degrees of freedom are reduced and there is added parameter uncertainty. Thus, adding 
additional parameters will decrease ln (SSR) but will increase (1 + p + q). The AIC allows you to 
add parameters until the marginal cost (i.e., the marginal cost is 2 for each parameter estimated) 
equals the marginal benefit. The SBC incorporates the larger penalty (1 + p + q) lnT. To use the 
SBC, select the values of p and q so as to minimize 

 
T ln (SSR) + (1 + p + q) ln(T) 

 
For any reasonable sample size, ln(T) > 2 so that the marginal cost of adding parameters 

using the SBC exceeds that of the AIC. Hence, the SBC will select a more parsimonious model 
than the AIC. As indicated in the text, the SBC has superior large sample properties. It is 
possible to prove that the SBC is asymptotically consistent while the AIC is biased toward 
selecting an overparameterized model. However, Monte Carlo studies have shown that in small 
samples, the AIC can work better than the SBC. 

 

  



 
 

Section 2.3: Review of Expected Values and Variance 
This material is key to understanding the material in Chapter 2 

1.  Expected value of a discrete random variable. 

A random variable x is defined to be discrete if the range of x is countable.  If x is discrete, 
there is a finite set of numbers x1, x2...xn such that x takes on values only in that set.  Let f(xj) = the 
probability that x=xj.  The mean or expected value of x is defined to be: 

1
( ) ( )

n

j j
j

E x x f x
=

= ∑  

Note:  

1. We can let n go to infinity; the notion of a discrete variable is that the set be "denumerable" or a 
countable infinity.  For example, the set of all positive integers is discrete. 

2. If Σxjf(xj) does not converge, the mean is said not to exist. 

3. E(x) is an "average" of the possible values of x; in the sum, each possible value of xj is weighted 
by the probability that x = xj; i.e., 

 

E(x) = w1x1 + w2x2 + ... + wnxn     where Swj = 1 

 

2.  Expected value of a continuous random variable. 

Now let x be a continuous random variable.  Denote the probability that x is in the interval (x0, 
x1) be denoted by f(x0 ≤ x ≤ x1).  It follows that: 

1

0
0 1( ) ( )

x

x
f x x x f x dx≤ ≤ = ∫  

The mean, or expected value, of x is: 

( ) ( )E x xf x dx
∞

−∞

= ∑  

3.  Expected value of a function. 

 Let x be a random variable and let g(x) be a function.  The mean or expected value of g(x) is: 

E[g(x)] = 
1

( ) ( )
n

j j
j

g x f x
=

∑  for discrete x  

or 

             [ ( )] ( ) ( )E g x g x f x dx
∞

−∞
= ∫  for continuous x. 

Note:  if g(xj) ≡ xj, we obtain the simple mean. 

4.  Properties of the expectations operator: 



 
 

a. The expected value of a constant c is the value of the constant:   i.e., E[c] = c. 

 Proof: Since we can let c = g(x), 

( ) ( ) ( )E c cf x dx c f x dx c
∞ ∞

−∞ −∞
= = =∫ ∫  

   

b. The expected value of a constant times a function is the constant times the expected value of the 
function:  

 Proof:  E[cg(x)] =  [ ( )] ( ) ( ) ( ) ( ) [ ( )]E cg x cg x f x dx c g x f x dx cE g x
∞ ∞

−∞ −∞
= = =∫ ∫  

c.  The expected value of a sum is the sum of the expectations: 

E[c1g1(x) + c2g2(x)] = c1Eg1(x) + c2Eg2(x) 

 Proof:   

1 1 2 2 1 1 2 2[ ( ) ( )] ( ) ( ) ( ) ( ) ( )c g x c g x f x dx c g x f x dx c g x f x dx
∞ ∞ ∞

−∞ −∞ −∞
± = ±∫ ∫ ∫  

                            = c1Eg1(x) + c2Eg2(x) 

5.  The Variance of a Random Variable:   

   The variance of x is defined such that var(x) = E{[x − E(x)]2} so that: 

 

var(x) = E{x2 − 2x E(x) + E(x) E(x)} 
 

 Since E(x) is a constant, E[E(x)] = E(x) and E[xE(x)] = [E(x)]2. Using these results and the 
property that expectation of a sum is the sum of the expectations: 

 

var(x) =  E(x2) − 2E{xE(x)} + E(x)2 

                      

              =  E(x2) − [E(x)]2 

6. Jointly Distributed Discrete Random Variables 
 Let x and y be random variables such that x takes on values x1, x2 ,... , xn and y takes on 

values y1, y2, ..., ym.  Also let fij denote the probability that x = xi and y = yj. If g(x, y) denotes a 
function of x and y, the expected value of the function is: 

1 1
[ ( , )] ( , )

n m

ij i j
i j

E g x y f g x y
= =

= ∑∑  

 

Expected value of a sum:  Let the function g(x, y) be x + y.  The expected value of x + y is: 

 



 
 

  
1 1

( ) ( )
n m

ij i j
i j

E x y f x y
= =

+ = +∑∑  

  
1 1 1 1

( )
n m n m

ij i ij j
i j i j

E x y f x f y
= = = =

+ = +∑∑ ∑∑  

  1 1 2 2 1 1 2 2
1 1
( ... ) ( ... )

m n

j j nj n i i im m
j i

f x f x f x f y f y f y
= =

= + + + + + + +∑ ∑  

Note that (f11 + f12 + f13 + ...  + f1m) is the probability that x takes on the value x1 denoted by f1.  
More generally, (fi1 + fi2 + fi3 + ...  + fim) is the probability that x takes on the value xi denoted by fi 
or f(xi). Since (f1i + f2i + f3i + ...  + fni) is the probability that y = yi [denoted by f(yi)], the two 
summations above can be written as: 

 

E[x + y] = Σxif(xi) + Σyif(yi) 

                   = E(x) + E(y) 

Hence, we have generalized the result of 4c above to show that the expected value of a sum is 
the sum of the expectations.  

7. Covariance and Correlation 

The covariance between x and y, denoted by cov(x, y)−−is defined to be: 

 

cov(x, y) = E{[x − E(x)] [y − E(y)]} ≡ σxy 
  

Multiply [x − E(x)] by [y − E(y)] and use the property that the expected value of a sum is the 
sum of the expectations: 

 

  cov(x, y) = E[x y] − E[x E(y)] − E[y E(x)] + E [E(x) E(y)] 
                    

      = E(x y) − E(x) E(y) 

The correlation coefficient between x and y is defined to be: 

ρxy = cov(x, y)/[var(x) var(y)]1/2 

Since cov(x, y) = E(xy) − E(x)E(y), we can express the expectation of the product of x and y--
E(xy)--as: 

    E(xy) = E(x)E(y) + cov(x, y) 

        

           = E(x)E(y) + ρxy σxσy 
 



 
 

where the standard deviation of variable z (denoted by σz) is the positive square root of z.  

8.  Conditional Expectation 
Let x and y be jointly distributed random variables where fij denotes the probability that x = xi 

and y = yj.  Each of the fij values is a conditional probability; each is the probability that x takes 
on the value xi given that y takes on the specific value yj.   

The expected value of x conditional on y taking on the value yj is: 

E[ x | yj ] = f1jx1 + f2jx2 + … + fnjxn 

 

9. Statistical Independence 
If x and y are statistically independent, the probability of x = xi and y = yj is the probability 

that x = xi multiplied by the probability that y = yj: using the notation in section 6, two events are 
statistically independent if and only if fij = f(xi)f(yj).  For example, if we simultaneously toss a fair 
coin and roll a fair die, the probability of obtaining a head and a three is 1/12; the probability of a 
head is 1/2 and the probability of obtaining a three is 1/6.  

An extremely important implication follows directly from this definition. If x and y are 
independent events, the expected value of the product of the outcomes is the product of the 
expected outcomes:   

E[ x y ] = E(x)E(y). 

The proof is straightforward. Form E[ x y ] as: 

 E[x y] = f11x1y1 + f12x1y2 + f13x1y3 +...+ f1mx1ym + f21x2y1 + f22x2y2 + f23x2y3 +... + f2mx1ym  

             + .... + fn1xny1 + fn2xny2 + fn3xny3 +... + fnmxnym 

or more compactly: 

Since x and y are independent, fij = f(xi)f(yj) so that: 

E[xy] = 
n

∑
i=1

f(xi)f(y1)xiy1 + 
n

∑
i=1

f(xi)f(y2)xiy2 + ...+ 
n

∑
i=1

f(xi)f(ym)xiym 

Recall Sf(xi)xi = E(x): 
 

    E[xy] = E(x)[f(y1)y1 + f(y2)y2 + ... + f(ym)ym] 

 

so that E[x y] = E(x)E(y).   

 

Since cov(x, y) = E(x y) − E(x)E(y), it immediately follows that the covariance and correlation 
coefficient of two independent events is zero.  

 

10.  An Example of Conditional Expectation 



 
 

Since the concept of conditional expectation plays such an important role in time-series 
econometrics, it is worthwhile to consider the specific example of tossing dice.  Let x denote the 
number of spots showing on die 1, y the number of spots on die 2, and S the sum of the spots (S = x 
+ y).  Each die is fair so that the probability of any face turning up is 1/6.  Since the outcome on die 
1 and die 2 are independent events, the probability of any specific values for x and y is the product 
of the probabilities.  The possible outcomes and the probability associated with each outcome S 
are:  

S 2 3 4 5 6 7 8 9 10 11 12 

f(S) 1/36 2/36 3/36 4/36 5/36 6/36 5/36 4/36 3/36 2/36 1/36 
 

To find the expected value of the sum S, multiply each possible outcome by the probability 
associated with that outcome.  As you well know if you have been to Las Vegas, the expected 
value is 7.   Suppose that you roll the dice sequentially and that the first roll turns up 3 spots.  What 
is the expected value of the sum given that x = 3?  We know that y can take on values 1 through 6 
each with a probability of 1/6.  Given x = 3, the possible outcomes for S are 4 through 9 each with 
a probability of 1/6.  Hence, the conditional probability of S given three spots on die 1 is: 

E[ Sx = 3] = (1/6)4 + (1/6)5 + (1/6)6 + (1/6)7 + (1/6)8 + (1/6)9 = 6.5 

11. Testing the significance of ρi  

Under the null hypothesis of ρi = 0, the sample distribution of ρ̂  is: 

a. approximately normal (but bounded at -1.0 and +1.0) when T is large  

b. distributed as a students-t when T is small.  

The standard formula for computing the appropriate t value to test significance of a 
correlation coefficient is: 

 2
2

ˆ1
ˆi

i

Tt
ρ

ρ −
−

=  with df = T − 2 

In reasonably large samples, the test for the null that ρi = 0 is simplified to ˆiρ  T1/2. 
Alternatively, the standard deviation of the correlation coefficient is (1/T)0.5.  

 

  



 
 

Section 2.4: Improving Your Forecasts and the Presentation 
of Your Results 

 
1. It is important for you and your reader to know the type of data you are using. There 
are many ways to measure certain variables. Stock prices may be opening, closing, or daily 
average values. Unemployment may or may not be seasonally adjusted. The point is that 
it is necessary to tell your reader what data you are using and where it comes from. 
 
2. Looking at the time path of a series is the single most important step in forecasting the 
series. Examining the series allows you to see if it has a clear trend and to get a reasonable 
idea if the trend is linear or nonlinear. Similarly, a series may or may not have periods of 
‘excess’ volatility. Graphs should be properly labeled and dates on the ‘time’ axis should be 
clear. 
 
3. There usually are several plausible models that confirm to the data. Such models should be 
compared as to their in-sample fit and their forecasts. 
 
4. It is standard to plot the forecasts in the same graph as the series being forecasted. Sometimes 
it is desirable to place confidence intervals around the forecasted values. If you chose 
a transformation of the series [e.g., log(x) ] you should forecast the values of the series, not 
the transformed values. 
 
5. The steps in the Box-Jenkins methodology entail: 

Identification 
Graph the data–see (2) above–in order to determine if any transformations are necessary 
(logarithms, differencing, ... ). Also look for outliers, missing values, breaks, … 
 
Nonstationary variables may have a pronounced trend or appear to meander without a 
constant mean and/or variance. 
 
Examine the ACF and the PACF of the transformed data and compare them to the theoretical 
ACF and PACF of ARMA processes. 
 
Estimation 
Estimate the plausible models and select the best. In this second stage, the goal is to select a 
parsomonous model. You should entertain the possibility of several models and estimate 
each. Forecasters do not want to project poorly estimated coefficients into the future, The aim 
is to approximate the DGP but not to pind down the exact process.  
 
The ‘best’ will have coefficients that are statistically signifcant and a good fit. (use the AIC 
or SBC to determine the fit). 
 
Several different models will have similar properties. As as extreme example, not that an 
AR(1) model has an infinite order representation.  
 



 
 

Be aware of the common factor problem. 
 
 Stationarity: The distribution theory underlying the procedure assumes that the {yt} 
series is stationary. The estimated AR coefficients should inply stationarity. The MA 
coreeicients should imply invertibility.  
 
Diagnostic Checking 
The residuals of a properly estimated model cannot contain any significant autocorrelations. 
Examine the ACF and PACF of the residuals to check for significant autocorrelations. Use 
the Q-statistics to determine if groups of autocorrelations are statistically significant. 
 
Other diagnostic checks include splitting the sample, and overfitting (adding a lagged value 
that should be insignificant). Be sure to check for coefficient instability. Check to see that the 
variance of the residuals is constant.  
 
Forecasting 
Forecast using several plausible modes. Compare the out-of-sample forecast accuracy of the 
alternatives.  

  



 
 

Section 2.5: Heteroskedasticity-Autocorrelation-Consistent 
(HAC) Estimators 

 
Within the framework of the Distributed Lag Model Assumption, ordinary least squares 

yields consistent estimators and a normal sampling distribution of the estimators.  Unfortunately, 
the variance of the sampling distribution suffers from autocorrelation and therefore OLS standard 
errors are wrong.  The solution to this problem rests in standard errors that are robust to 
autocorrelation as well as heteroskedasticity.  Let us return to a no lag framework.  Our model 
takes the form yt = bxt + εt .  Consider the OLS estimator for b1: 
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1 1

ˆ
T T

t t t
t t

x y xβ
= =

= ∑ ∑  

 
 

The difference between the estimated value and the actual value of b is: 
 

2

1 1

ˆ
T T

t t t
t t

x xββ  ε
= =

− = ∑ ∑  

 
 

The the sample size be large so that 2 2
t xx σ→∑  and define vt = t tx ε∑ . As such  

2

1

ˆ /
T

t x
t

v Tββ  σ
=

 − =  
 
∑  

 
 Given that β̂ is unbiased, we can take the variance of each side: 

4 2
1

1 1ˆvar( ) var
T

t
tx

v
T

β
σ =

  =      
∑  

 
 Note that we can construct wT such that 

2

1

var / /
T

t T v
t

v T w Tσ
=

  = 
 
∑  

 
 

where 
1

1

1 2
T

T j
j

T jw
T

ρ
−

=

− = +  
 

∑ and ρj is the j-th autocorrelation coefficient. 

Hence 
2

4

1ˆvar( ) v
T

x

w
T

σβ
σ

 =   
 

 
The key to creating standard errors that are robust to autocorrelation as well as 



 
 

heteroskedasticity is finding the appropriate estimates of the weights, 𝑤𝑇.  It is not possible to 
find the actual weights since these weights depend upon unknown autocorrelations.  In essence, 
the Heteroskedasticity Autocorrelation Consistent Estimator (HAC) finds these appropriate 
estimates of the weights. 

 
The most commonly used weight estimates are sometimes referred to as the ‘Newey-West” 

weights: 
 

𝑤𝑇
∗ = 1 + 2 � (

𝑚− 𝑗
𝑚

)
𝑚−1

𝑗=1

𝜌�𝑗 

 
Where 𝜌�𝑗 is an estimator of 𝜌𝑗 and m is called the truncation parameter which is left up to the 

practitioner to choose its magnitude. 
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ENDNOTES TO CHAPTER 3 
 

1. Letting a(L) and b(L) be polynomials in the lag operator L, we can rewrite ht in the for ht = a0 

+ a(L)εt
2 + b(L)ht . The notation a(1) denotes the polynomial a(L) evaluated at L = 1; i.e., 

a(1) = a1 + a2 + … +aq. Bollerslev (1986) showed that the GARCH process is stationary 
with Eεt = 0, var(εt) = a0/(1–a(1) – b(1)), and cov(εt,εt−s) = 0 for s ≠ 0 if a(1) + b(1) < 1.  

2.  From introductory statistics, if a correlation coefficient ρi is formed from T observations, then 
under the null hypothesis ρi = 0, in very large samples, the value ρi/[(1 – ρi

2)/(T − 2)]0.5 has t-
distribution with T – 2 degrees of freedom. The standard deviation is [(1 – ρi

2)/(T − 2)]−0.5. 
For reasonably small values of ρi (so that 2

iρ is very close to zero) and with the sample sizes 
used in time series analysis (so that T – 2 ≅ T), the standard deviation of ρi is approximately 
T−0.5. 

3. Unfortunately, there is no available method to test the null of white-noise errors versus the 
specific alternative of GARCH(p, q) errors. As indicated in Question 3, Bollerslev (1986) 
proved that the ACF of the squared residuals resulting from (3.9) are an ARMA(m, p) model 
where m = max(p, q).  

4.   The unconditional mean of yt is altered by changing only the value δ. Changing b and δ 
commensurately maintains the mean value of the {yt} sequence. 

5.    If you are not particularly interested in the tails of the distribution, in large samples, it is 
reasonable to ignore the issue of a fat-tailed distribution. Quasi-maximum likelihood 
estimates use the normal distribution even though the actual distribution of the {εt} sequence 
is fat-tailed. Under fairly weak assumptions, the parameter estimates for the model of the 
mean and the conditional variance are consistent and normally distributed.  

6. In constructing the data set, no attempt was made to account for the fact that the market was 
closed on holidays and on important key dates such as September 11, 2001. For simplicity, 
we interpolated to obtain values for non-weekend dates when the market was closed. 

 

 

  



 
 

 

SECTION 3.1  

APPENDIX 3.1 MULTIVARIATE GARCH MODELS 
The Log-Likelihood Function 

In the multivariate case, the likelihood function presented in Section 8 needs to be modified. 
For the 2-variable case, suppose that ε1t and ε2t are zero-mean random variables that are jointly 
normally distributed. For the time being, we can keep the analysis simple if we assume the 
variances and the covariance terms are constant. As such, we can drop the time subscripts on the 
hijt. In such a circumstance, the log-likelihood function for the joint realization of ε1t and ε2t is 

 
2 2
1 2 12 1 2

2 0.52
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   (A3.1) 

where ρ12 is the correlation coefficient between ε1t and ε2t; ρ12 = h12/(h11h22)0.5.  
 Now if we define the matrix H such that 

11 12

12 22

h h
H

h h
 

=  
 

 

the likelihood function can be written in the compact form  

 1
1/ 2

1 1exp
22

t t tL H
H

ee
p

− ′= −  
   (A3.2) 

where εt = ( ε1t, ε2t )', and | H | is the determinant of H.  To see that the two representations 
given by (A3.1) and (A3.2) are equivalent, note that | H | = h11h22 – (h12)2. Since h12 = 
ρ12(h11h22)0.5, it follows that | H | = (1 – (ρ12)2)h11h22. Moreover,  

2 2
1 1 22 1 2 12 2 11

2
11 22 12

2t t t t
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 Since h12 = ρ12(h11h22)0.5,  
2 2

1 1 2 12 1 2
2 0.5
12 11 22 11 22

21
(1 ) ( )

t t t t
t tH

h h h h
ε ε ρ ε εε ε

ρ
−   

′ = + −  −   
 

 Now, suppose that the realizations of {εt} are independent, so that the likelihood of the 
joint realizations of ε1, ε2, … εT is the product in the individual likelihoods. Hence, if all have the 
same variance, the conditional likelihood of the joint realizations is 

1
1/ 2

1

1 1exp
22

T

t t
t

L H
H

ee
p

−

=

 ′= −  
∏  



 
 

 It is far easier to work with a sum than with a product. As such, it is convenient to take 
the natural log of each side so as to obtain 

 1

1

1ln ln (2 ) ln | |
2 2 2

T

t t
t

T TL =  H Hπ ε ε−

=

′− − − ∑   

 The procedure used in maximum-likelihood estimation is to select the distributional 
parameters so as to maximize the likelihood of drawing the observed sample. Given the 
realizations in εt, it is possible to select h11, h12, and h22 so as to maximize the likelihood 
function.  

 For our purposes, we want allow the values of hij to be time-varying. If you worked 
through Section 8, it should be clear how to modify this equation if h11, h22, and h12 are time 
varying. Consider 
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L H
H

ee
p

−

=
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where  

11 12

12 22

t t
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 Now, if we take the log of the likelihood function, 

 1

1

1ln ln(2 ) (ln | | )
2 2

T

t t t t
t

TL H Hπ ε ε−

=

′= − − +∑   (A3.3) 

 The convenience of working with (A3.2) and (A3.3) is that the form of the likelihood 
function is identical for models with k variables. In such circumstances, H is a symmetric k x k 
matrix, εt is a k x 1 column vector, and the constant term (2p) is raised to the power k.  

Multivariate GARCH Specifications 
Given the log-likelihood function given by (A3.3), it is necessary to specify the functional 

forms for each of the hijt. The most familiar specifications are given below: 

1. The vech Model: The vech operator transforms the upper (lower) triangle of a symmetric 
matrix into a column vector. Consider the symmetric covariance matrix  

11 12

12 22

t t
t

t t

h h
H

h h
 
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so that 

vech(Ht) =  [ h11t, h12t, h22t ]′ 

 Now consider the vector εt = [ε1t, ε2t]′. The product εtεt′ = [ε1t, ε2t]′[ε1t, ε2t] is the 2 x 2 
matrix 



 
 

2
1 1 2

2
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t t t
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 Hence, vech(εtεt′) = 2 2
1 1 2 2, ,t t t tε ε ε ε ′   . If we now let C =  [ c1, c2, c3 ]′, A = the 3 x 3 matrix with 

elements aij, and B = the 3 x 3 matrix with elements bij, we can write 

vech(Ht) = C + A vech(εt−1εt−1′) + B vech(Ht−1) 

 If you are familiar with matrix operations, it should be clear that this is precisely the 
system represented by equations (3.42) through (3.44). The diagonal vech uses only the diagonal 
elements of A and B and sets all values of aij = bij = 0 for i ≠ j. 
2. The BEK Model: In a system with k variables, the BEK specification has the form  

Ht = C'C + A'εt−1εt−1'A + B'Ht−1B 
where A and B are k x k matrices. However, C must be a symmetric k x k matrix in order to 

ensure that the intercepts of the off-diagonal elements hijt are identical. As suggested in the text 
for the 2-variable case, 
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3. Constant Conditional Correlations: The CCC formulation is clearly a special case of the 
more general multivariate GARCH model. In the 2 variable case, we can write Ht as 
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 Now, if h11t and h22t are both GARCH(1, 1) processes, there are seven parameters to 
estimate (the six values of ci, aii and bii, and ρ12).  

4. Dynamic Conditional Correlations: Engle (2002) shows how to generalize the CCC model 
so that the correlations vary over time. Instead of estimating the all of the parameters 
simultaneously, the Dynamic Conditional Correlation (DCC) model uses a two-step estimation 
process. The first step is to use Bollerslev’s CCC model to obtain the GARCH estimates of the 
variances and the standardized residuals. Note that the standardized residuals, 0.5ˆˆ /it it iits hε= , are 
estimates of the vit. The second step uses the standardized residuals to estimate the conditional 
covariances. Specifically, in the second step you create the correlations by smoothing the series 
of standardized residuals obtained from the first step. Engle examines several smoothing 
methods. The simplest is the exponential smoother qijt = (1 − λ)sitsjt + λqijt1 for λ < 1. Hence, 



 
 

each {qiit} series is an exponentially weighted moving average of the cross-products of the 
standardized residuals. The dynamic conditional correlations are created from the qijt as 

 0.5/( )ijt ijt iit jjtq q qρ =   (A3.4) 

Engle shows that a two-step procedure yields consistent estimates of the time varying 
correlation coefficients. However, the estimates are not as efficient as those from one-step 
procedures such as the BEK and diagonal vech models. Restricting the coefficient on ijs to equal 
(1 – a – b) ensures that the qijt converge to the unconditional covariances.  

An alternative smoothing function is to estimate qijt = (1 ) ijsαβ − − + asitsjt + bqijt1 where ijs
is the unconditional covariance between sit and sjt by maximum-likelihood estimation. Plug the 
estimated coefficients from the first step (i.e., from the CCC model) into the likelihood function 
so that only a and b need to be estimated.  

For those of you wanting a formal proof that the 2-step procedure is feasible, you should be 
able to convince yourself that it is possible to write the Ht matrix as 

Ht = DtRtDt 
where Dt = the diagonal matrix with (hiit)0.5 on the diagonals and Rt is the matrix of time-varying 
correlations. This follows from the definition of a correlation coefficient; Rt consists of the 
elements rijt = (hijt)/(hiithjjt)0.5. For example, in the 2-variable case it is easy to verify Ht = DtRtDt 
or Rt = (Dt)-1Ht(Dt)-1 since 
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Now write the likelihood function (A3.3) by substituting DtRtDt for Ht as 
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 Notice that Dt and Rt enter the likelihood separately and that εt'Rtεt represents the squared 
standardized residuals. The final step is to add and subtract the sum of the squared standardized 
residuals to (A3.5). If we represent the standardized residuals by vt, the sum of the squared 
standardized residuals is vt'vt. It is also possible to show that vt'vt = 1 1

t t t tD Dε ε− −′ . For example, in 
the 2-variable case, 
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 Thus, we can write the likelihood function as 
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 The point of the exercise is to show that the 2-step procedure is appropriate. Notice that 
Dt and Rt enter the equation separately. As such, the parameters of the two matrices can be 
estimated separately. You can use the CCC model to estimate the parameters of Dt; this can be 
done without any knowledge of the values of Rt. Use these estimates to construct the values of  | 
Dt | and the standardized residuals. Plug these values into the likelihood function and then select 
the optimal values of Rt.  In essence, in the first stage, you maximize 
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and in the second stage you maximize 
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Section 3.2: Value at Risk 
 

Value at Risk (VaR) is a concept used by portfolio managers to measure the downside risk of a 
particular portfolio of financial instruments. For any pre-specified probability level p, the VaR is 
the value of the loss that will occur with probability p. Usually, the time period is a single day, 
but other time horizons are possible. For example, if a portfolio of stocks has a one-day 5% VaR 
of $10 million, there is a 5% probability that the portfolio will fall in value by more than $10 
million over a one day period.  

 
One way to calculate VaR is to use a GARCH model. Suppose that the continually 

compounded daily return of a portfolio (rt) follows a conditional normal distribution such that:  
 
Et-1rt ~ N(0, ht) 

 
where the conditional variance ht follows an IGARCH process. Let 

 
ht = a0 + a1(et-1)2 + (1 – a1)(ht-1)2  
 
Now suppose that you want to know the value at risk of a portfolio using a 5% 

probability. As such, you can 1.64 standard deviations [ = 1.64(ht+1)1/2 ] to measure the risk of the 
portfolio. In general, the Value at Risk for one day is: 

 
    VaR = Amount of Position x 1.64(ht+1)1/2 and for k days is 
 
and the Value at Risk for k days is 
 
   VaR(k) = Amount of Position x 1.64(k ht+1)1/2  
 

To take a specific example, suppose that the model of the mean for the return on a 
particular stock (or a portfolio of stocks) is: 

 
rt = 0.001 + 0.02rt-1 + εt 

 
and that    
              

ht = 0.004 + 0.1(εt-1)2 + 0.9(ht-1)2  
 

Also suppose that the values of rt, εt-1 and ht-1 are such that 
 
Et(rt+1) = 0.025 

 
and 
 

Et(ht+1) = 0.005 
Now, the issue is to find the amount that is 1.64 standard deviations below the expected 



 
 

return. The 5% quantile is calculated to be  
 
0.025 – 1.64*(0.005)1/2 = –0.091 
 

 
As such, –0.091 is the value that is 1.64 standard deviations below the expected return of 

0.025. Thus, is you had $1 invested in this stock, you would expect a 0.025 return but there 
would be a 5% chance of a return less than or equal to −0.091. The VaR for a portfolio size of 
$10,000,000 with probability 0.05 is ($10,000,000 )(0.091) = $910,000. As such, with 95% 
chance, the potential loss of the portfolio is $910,000 or less. 
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ENDNOTES TO CHAPTER 4 

1. Many treatments use the representation yt = trend + seasonal + cyclical + noise. In this text, 
the term cyclical is avoided because it implies that cyclical economic components are 
deterministic.   

2. For the same reason, it is also inappropriate to use one variable that is trend stationary and 
another that is difference stationary. In such instances, “time” can be included as a so–called 
explanatory variable, or the variable in question can be detrended.  

3. Suppose that the estimated value of γ is –1.9 (so that the estimate of a1 is –0.9) with a standard 
error of 0.04. Since the estimated value of γ is 2.5 standard errors from –2 [ (2 – 1.9)/0.04 = 2.5 ], 
the Dickey–Fuller statistics indicate that we cannot reject the null hypothesis a1 = –2 at the 95 
percent significance level. Unless stated otherwise, the discussion in this text assumes that a1 is 
positive.  

4. When the distribution for vt is more complicated, the distribution of the mean may not be 
normal with variance σ2/T. 

5. The ERS procedure is called Generalized Least Squares (GLS) detrending because of the 
way that the near-differencing is performed. Suppose B(L) is the first-order autoregressive 
process: εt + aεt−1. Forming yt − ayt−1 yields the serially uncorrelated error structure used in 
GLS. In the problem at hand, the actual a is unknown. However, if the yt series is persistent, 
such differencing should mean that the ACF of B(L)εt  − aB(L)εt−1 is close to that of a white 
noise process. 

6. To explain, if the error process were such that B(L) =  
0

i
t ii

α ε∞
−=∑ , the variance of the error 

term would be σ2/(1 – a2) . Treating σ2 = 1, and dividing y1 by its standard deviation yields y1(1 
− a2)0.5. 

 

  



 
 

Section 4.1 More on Unobserved Component Models 
 

The purpose of this section is to expand the discussion of unobserved component models. 
Harvey (1989) contains a detailed treatment of the issue. The random walk plus noise model and 
the general trend plus irregular model are examples of processes with several unobserved 
components. Reconsider the general trend plus irregular model of (4.9). The variable yt might 
represent real GDP, εt might represent a productivity shock and ηt might represent a demand-side 
shock. The specification in (4.9) implies that productivity shocks, but not demand shocks, have 
permanent effects on real GDP.  

The local linear trend (LLT) model is built by combining several random walk plus noise 
processes. Let {εt}, {ηt} and {δt} be three mutually uncorrelated white noise processes.  The 
local linear trend model can be represented by 

 yt = μt + ηt  

 μt =  μt-1 + at + εt  

 at = at-1 + δt  

The local linear trend model consists of the noise term ηt plus the stochastic trend term μt.  
What is interesting about the model is that the change in the trend is a random walk plus noise: 
that is, Δμt is equal to the random walk term at plus the noise term εt. Since this is the most 
detailed model thus far, it is useful to show that the other processes are special cases of the local 
linear trend model.  For example: 

 

1. The random walk plus noise: If all values of the {at} sequence are equal to zero, the LLT 
model degenerates into a random walk (μt = μt-1 + εt) plus noise (ηt). Let var(δ) = 0, so that at = 
at-1 = ... = a0.  If a0 = 0, μt = μt-1 + εt  so that yt is the random walk μt plus noise term ηt. 

2. The random walk plus drift: Again, let var(δ) = 0, so that at = at-1 = ... = a0.  Now if a0 
differs from zero, the trend is the random walk plus drift: μt = μt-1 + a0 + εt.  Thus, the LLT 
model becomes trend plus noise model. If we further restrict the model such that var(ηt) = 0, 
the model becomes the pure random-walk plus drift model.  

  

The solution for yt can easily be found as follows.  First, solve for at as: 
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Since, y0 = μ0 + η0, the solution for yt is 
t
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Here we can see the combined properties of all the other models. Each element in the {yt} 
sequence contains a deterministic trend, a stochastic trend, and an irregular term.  The stochastic 
trend is Sεi and the irregular term is ηt. Of course, in a more general version of the model, the 
irregular term could be given by A(L)ηt. What is most interesting about the model is the form of 
the deterministic time trend. Rather than being deterministic, the coefficient on the time depends 
on the current and past realizations of the {δt} sequence. If in period t, the realized value of the 
sum a0 + δ1 + .. + δt happens to be positive, the coefficient of t will be positive. Of course, this 
sum can be positive for some values of t and negative for others.  

 

Signal Extraction   
Signal extraction issues arise when we try to decompose a series into its individual components. 
Suppose we observe the realizations of a stationary sequence {yt} and want to find the optimal 
predictor of its components.  Phrasing the problem this way, it is clear that the decomposition 
can be performed using the minimum MSE criterion discussed above. As an example of the 
technique, consider a sequence composed of two independent white-noise components:  

 

yt = εt + ηt 

where   Eεt    = 0 

       Eηt  = 0 

      Eεtηt = 0 

      Eεt
2  = σ2 

        Eηt
2  = ση

2. 
Here the correlation between the innovations is assumed to be equal to zero; it is 

straightforward to allow non-zero values of Eεtηt.  The problem is to find the optimal prediction, 
or forecast, of εt (called εt*) conditioned of the observation of yt. The linear forecast has the form 

εt* = a + byt 

In this problem, the intercept term a will be zero so that the MSE can be written as 

                                           MSE = E( εt - εt*)2 

                                                     = E( εt - byt )2 

= E[ εt - b(εt + ηt) ]2 
Hence the optimization problem is to select b so as to minimize: 



 
 

                            MSE = E[ (1-b)εt - bηt ]2  

=  (1-b)2Eεt
2 + b2Eηt

2      since Eεtηt = 0. 
The first-order condition is 

-2(1-b)σ2 + 2bση
2 = 0 

so that  

b = σ2/(σ2 + ση
2) 

Here, b partitions yt in accord with the relative variance of εt; i.e., σ2 /(σ2 + ση
2).  As σ2 

becomes very large relative to ση
2, b → 1; as σ2 becomes very small relative to ση

2, b → 0. 
Having extracted εt, the predicted value of ηt is: ηt* = yt - εt*. However, this optimal value of b 
depends on the assumption that the two innovations are uncorrelated. Although the computation 
becomes far more complex with a model like the LLT, the methodology is the same.  

Signal Extraction and Least-Squares Projection 
The problem for the econometric forecaster is to select an optimal forecast of a random variable 
y conditional on the observation of a second variable x. Since the theory is quite general, for the 
time being we ignore time subscripts. Call this conditional forecast y* so that the forecast error is 
(y-y*) and the mean square forecast error (MSE) is E(y - y*)2. One criterion used to compare 
forecast functions is the MSE; the optimal forecast function is that with the smallest MSE.   

Suppose x and y are jointly distributed random variables with known distributions.  Let the 
mean and variance of x be µx and σ2

x, respectively. Also, suppose the value of x is observed 
before having to predict y. A linear forecast will be such that the forecast y* is a linear function 
of x.  The optimal forecast will necessarily be linear if x and y are linearly related, and/or if they 
are bivariate normally distributed variables. In this text, only linear relationships are considered; 
hence, the optimal forecast of y* has the form 

 

y*  = a + b(x - µx) 
 

The problem is to select the values of a and b so as to minimize the MSE: 

 

 Min E(y - y*)2 = E[y - a - b(x-µx)]2 
   {a, b} 
   = E[y2 + a2 + b2 (x-µx)2 - 2ay + 2ab (x-µx) - 2by(x-µx)]  

 

Since E(x - µx) = 0, Ey = µy, E(x-µx)2 = σ2
x, and E(xy) - µxµy = Cov(x , y) = σxy, it follows       

that 

 

E(y - y*)2 = Ey2 + a2 + b2σ2
x - 2aµy - 2bσxy 

 



 
 

Minimizing with respect to a and b yields 

 

a = µy,     b = σxy/σ2
x 

 

Thus, the optimal prediction formula is 

 

y* = µy - (σxy/σ2
x)µx + (σxy/σ2

x)x 
 

The forecast is unbiased in the sense that the mean value of the forecast is equal to the       
mean value of y. Take the expected value of y* to obtain:  

 

Ey* = E[µy - (σxy/σ2
x)µx + (σxy/σ2

x)x] 
 

Since, µy, σxy, and σ2
x are constants, and that µx = Ex, it follows that 

 

Ey* =  µy 

 
You should recognize this formula from standard regression analysis; a regression equation is 

the minimum mean square error, linear, unbiased forecast of y*.  The argument easily 
generalizes forecasting y conditional on the observation of the n variables x1 through xn and to 
forecasting yt+s conditional on the observation of yt, yt-1, ... .  For example, if yt = a0 + a1yt-1 + εt 
the conditional forecast of yt+1 is: Etyt+1 = a0 + a1yt. The forecasts of yt+s can be obtained using 
the forecast function (or iterative forecasts) discussed in section 11 of Chapter 2.  

 
Forecasts of a Non-stationary Series Based on Observables         
Muth (1960) considers the situation in which a researcher wants to find the optimal forecast of yt 
conditional on the observed values of yt-1, yt-2, ... .  Let {yt} be a random-walk plus noise. If all 
realizations of {εt} are zero for t ≤ 0, the solution for yt is: 
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where   y0 is given and µ0 = 0.  
Let the forecast of yt be a linear function of the past values of the series so that: 
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where   the various values of vi are selected so as to minimize the mean square forecast error.  

Use (A4.1) to find each value of yt-i and substitute into (A4.2) so that: 
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Thus, optimization problem is to select the vj so as to minimize the MSE:  
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Since the expected value of all cross products are zero, the problem is to select the vj so as to 
minimize 
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For each value of vk, the first-order conditions is: 
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All {vk} will satisfy the difference equation given by (A4.3). To characterize the nature of the 
solution, set k = 1, so that the first equation of (A4.3) is 
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and for k = 2, 
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so that by subtraction, 

0)()1 ( 12
2

1
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Now take the second-difference of (A4.3) to obtain: 
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The solution to this homogeneous second-order difference equation has the form: vk = A1λ1
k 

+ A2λ2
k where A1 and A2 are arbitrary constants and λ1 and λ2 are the characteristic roots. If you 

use the quadratic formula, you will find that the larger root (say λ2) is greater than unity; hence, 
if the {vk} sequence is to be convergent, A2 must equal zero. The smaller root satisfies 

 

λ1
2 - (2 + σ2

ε /σ2
η)λ1 + 1 = 0                                            (A4.5)  

 

To find the value of A1, substitute v1 = A1λ1 and v2 = A1λ1
2 into (A4.4): 

 

σ2
ε(1 - A1λ1) - σ2

ηA1(λ1
2 - λ1) = 0 

 

If you solve (A4.5) for λ1, it is possible to verify: 

 

A1 = (1 - λ1)/λ1 

 
Hence the vk are determined by:  

 

vk = (1 - λ1)λ1
k-1 

 

The one-step ahead forecast of yt is 
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Since λ1 < 1, the summation is such that: (1-λ1)Sλ1
j-1 = 1. Hence, the optimal forecast of yt 

can be formed as a geometrically weighted average of the past realizations of the series.    

 



 
 

Section 4.2: Random Number Generation 
Random number generation is an essential feature of the Monte Carlo methods described 
in Chapter 4.  
 Computers are not capable of generating truly random numbers--any sequence generated 
is actually a deterministic sequence.  If you are aware of the algorithm used to generate the 
sequence all values of the sequence can be calculated by the outside observer.  Computers 
generate pseudo-random numbers--the numbers generated are indistinguishable from those 
obtained from independent draws from a uniform distribution. 
 
 A common algorithm used in random number generation involved the mod( ) function:  
mod(x, z) means divide x by z and keep only the remainder.  For example, mod (3, 5) = 3, mod(6, 
5) = mod(11, 5) = 1, and mod(11.3, 5) = 1.3. Of course, in a computer, 1/3 will be an 
approximate value since it is not possible to write a decimal equivalent of 1/3 using a finite 
number of digits. 
  
 Consider the nonlinear difference equation:  
  

zt+1 = mod(λzt+ a, m) 
 

              yt = zt/m 
 
where: m, λ, and a are parameters.  
 
 If we use z1 = 1, λ = 2, m = 10 and a = 5, the next 5 values of the {zt} and {yt} sequences 
are: 
  
 z2 = mod(2*1 + 5, 10) = 7   so that y2 = 0.7 
 z3 = mod(2* 7 + 5, 10) = 9  so that y3 = 0.9 
 z4 = mod(2*9 + 5, 10) = 3  so that y4 = 0.3 
 z5 = mod(2*3 + 5, 10) = 1   so that y5 = 0.1 
 
so that the series repeats itself.  
 

 The point is that not all parameter choices for a, m, and λ are well-behaved. Note that λ is 
called the multiplier.  Clearly, λ needs to be greater than unity so that the numbers do not 
converge to zero. Nevertheless, some values of λ > 1 will lead to poorly behaved sequences. 
Also note that m is should be a very large number to ensure that the sequence does not repeat 
itself very quickly. A series produced by this type of random number generator will repeat itself 
in no more than m steps. In addition, some values of m will display serial correlation; it is 
important to select a value of m such that the degree of serial correlation is small. A random 
number generation module for Mathcad uses the values m = 732289, λ = 9947, and a = 67. If we 
start using the seed value z1 = 1, it follows that  

 



 
 

 z2 = mod(9947*732289*1+ 67, 732289) = 10014  so that y2 = 1.36536 x 10-6 
 z3 = mod(9947*732289*10014+ 67, 732289) = 4421 so that y3 = 0.01367 
 z4 = mod(9947*732289*4421+ 67, 732289) = 32414 so that y4 = 0.04426 
 z5 = mod(9947*732289*32414+ 67, 732289) = 170965 so that y5 = 0.23343 
The numbers generated by this set of parameter values will closely approximate a set of serially 
uncorrelated uniformly distributed random variables over the interval [0, 1]. The time path of the 
first 100 values of the {yt} series is given by: 
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Figure 1:  100 Pseudo-Random Numbers
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 By construction, zt must be less than m. As such each value of yt is between zero and 
unity. For this particular value of m, the correlation coefficient between yt and yt-1 is 0.02617. 
However, if m = 992 is selected, the correlation coefficient will be 0.30176.   

Given the values of {yt}, it is possible to make other transformations of the series so as to 
generate distributions other than a uniform distribution.  

Note the important difference between correlation and independence. Each pseudo-random 
number is perfectly predicable if you know the initial seed value and the algorithm generating 
the numbers. Nevertheless, it is possible to generate sets of numbers that are serially 
uncorrelated. Recall that correlation is simply a measure of linear dependence. The random 
number generating routine described here is clearly nonlinear.  



 
 

 

SECTION 4.3: The Bootstrap 
Bootstrapping is similar to a Monte Carlo experiment with one essential difference. In a 

Monte Carlo study, you generate the random variables from a given distribution such as the 
Normal. The bootstrap takes a different approach––the random variables are drawn from their 
observed distribution. In essence, the bootstrap uses the plug–in principle––the observed 
distribution of the random variables is the best estimate of their actual distribution.  

The idea of the bootstrap was developed in Efron (1979). The key point made by Efron is 
that the observed data set is a random sample of size T drawn from the actual probability 
distribution generating the data. In a sense, the empirical distribution of the data is the best 
estimate of the actual distribution of the data. As such, the empirical distribution function is 
defined to be the discrete distribution that places a probability of 1/T on each of the observed 
values. It is the empirical distribution function––and not some prespecified distribution such as 
the Normal––that is used to generate the random variables. The bootstrap sample is a random 
sample of size T drawn with replacement from the observed data putting a probability of 1/T on 
each of the observed values.  

Example: To be more specific, suppose that we have the following 10 values of xt: 

 
1 2 3 4 5 6 7 8 9 10 

0.8 3.5 0.5 1.7 7.0 0.6 1.3 2.0 1.8 –0.5 
 The sample mean is 1.87 and the standard deviation is 2.098. The following data show 

three different bootstrap samples. Each bootstrap sample consists of 10 randomly selected values 
of xt drawn with replacement––each of the 10 values listed above is drawn with a probability of 
0.1. It might seem that this resampling repeatedly selects the same sample. However, by 
sampling with replacement, some elements of xt will appear more than once in the bootstrap 
sample. The first three bootstrap samples might look like this: 

 
t 1 2 3 4 5 6 7 8 9 10 µi
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where: xi
* denotes bootstrap sample i and µi

* is the sample mean.  

 Notice that 0.6 and 1.7 appear twice in the first bootstrap sample, 0.6, 0.8 and 1.8 appear 
twice in the second and that 1.3 appears three times in the third bootstrap sample. Unless there is 
a large outlier, Efron (1979) shows that the moments of the bootstrap samples converge to the 
population moments as the number of bootstrap samples goes to infinity. 



 
 

Bootstrapping Regression Coefficients 
Suppose you have a data set with T observations and want to estimate the effects of variable 

x on variable y. Towards this end, you might estimate the linear regression: 

yt = a0 + a1xt + εt 

Although the properties of the estimators are well known, you might not be confident about 
using standard t-tests if the estimated residuals do not appear to be normally distributed. You 
could perform a Monte Carlo study concerning the statistical properties of 0â and 1â . However, 
instead of selecting various values of εt from a normal distribution, you can use the actual 
regression residuals. The technique is called the method of bootstrapped residuals.1 To use the 
procedure, perform the following steps: 

STEP 1: Estimate the model and calculate the residuals as: et = yt – 0â – 1â xt. 

STEP 2: Generate a bootstrap sample of the error terms containing the elements *
1e , *

2e , … , *
Te . 

Use the bootstrap sample to calculate a bootstrapped y series (called y*). For each value 
of t running from 1 to T, calculate *

ty as: 

* *
0 1ˆ ˆt t ty  = a  + a x  +  e  

 Note that the estimated values of the coefficients are treated as fixed. Moreover, the 
values of xt are treated as fixed quantities so that they remain the same across samples.  

STEP 3: Use the bootstrap sample of the *
ty series generated in Step 1 to estimate new values of 

a0 and a1 calling the resulting values *
0a  and *

1a . 

STEP 4: Repeat Steps 2 and 3 many times and calculate the sample statistics for *
0a  and *

1a . 
These should be distributed in the same way as 0â  and 1â . For example, you can find the 
95 percent confidence interval for 1â  as interval between the lowest 2.5 percent and the 
highest 97.5 percent of the values of *

1a . 

 Step 2 needs to be modified for a time series model due to the presence of lagged 
dependent variables. As such, the bootstrap { *

ty } sequence is constructed in a slightly different 
manner. Consider the simple AR(1) model:  

yt = a0 + a1yt–1 + εt 

 As in Step 2, we can construct a bootstrap sample of the error terms containing the 
elements *

1e , *
2e , … , *

Te . Now, construct the bootstrap { *
ty } sequence using this sample of error 

terms. In particular, given the estimates of a0, and a1 and an initial conditions for *
1y , the 

remaining values of the { *
ty } sequence can be constructed using: 

*
ty = * *

0 1 1ˆ ˆ t ta a y e−+ +  

 For an AR(p) model, the initial conditions for *
1y through *

py are usually selected by 



 
 

random draws from the actual {yt} sequence.2 To avoid problems concerning the selection of the 
initial condition, it is typical to construct a bootstrap sample with T + 50 elements and to discard 
the first 50.  

Example 1: Constructing a Confidence Interval.  In Sections 2 and 12, the logarithmic 
change in real U.S. GDP was estimated as  

∆lrgdpt = 0.0049 + 0.3706∆lrgdpt–1 
                          (6.80)      (6.44)               
 

 Suppose that you want to obtain a 90% confidence interval for the AR(1) coefficient. 
Given that the t-statistic is 6.44, the standard deviation is 0.0576. Thus, if the estimated value of 
a1 does have a t-distribution, a confidence interval that spans ± 1.65 standard deviations on each 
side of 0.3706 runs from 0.276 to 0.466. However, the residuals do not appear to be normally 
distributed so that, the t-distribution may not be appropriate.25 As such, we may want to construct 
bootstrap confidence intervals for the coefficient 0.3309. For Step 2, we need to generate a 
bootstrap sample of the regression residuals. This series, denoted by { *

te }, consists of 262 
randomly drawn values from the actual residual sequence. We also need an initial condition; we 
can draw a random value of the {∆lrgdpt} sequence to serve as the initial condition. As such, we 
can create the following bootstrap sequence for { *

ty } containing a total of 262 observations.  

*
ty  = 0.0049 + 0.3706 *

1ty −  + *
te  

 For Step 3, we pretend that we do not know the actual data-generating process for { *
ty } 

and estimate the series as an AR(1) process. Suppose you find that the estimated AR(1) 
coefficient is 0.35. This estimate is the first value of *

1a . Repeat this process several thousand 
times to obtain the distribution of *

1a . After performing the 10,000 replications of the 
experiment, you should find that approximately 5 percent of the estimates lie below 0.2652 and 5 
percent lie above 0.4524. These values serve as a 90 percent confidence interval. In this case, it 
turns out that the bootstrap confidence interval is similar to that obtained using a standard t-
distribution.  

Example 2: Bootstrapping a Test Statistic. Equation (4.29) was used to perform a Dickey–
Fuller test on the real GDP series. Recall that the estimated model was 

 ∆lrgdpt = 0.1248 + 0.0001t − 0.0156lrgdpt–1 + 0.3663∆lrgdpt–1   
                   (1.58)      (1.31)      (−1.49)            (6.26)        

 The t-statistic for γ (i.e., the coefficient on lrgdpt–1) of –1.49 is not significant at conventional 
levels. However, a concern might be that the residuals from model are not normally distributed. 
Moreover, only in large samples do the coefficients of the augmented terms have no bearing on 
the appropriate critical values. Hence, it seems reasonable to bootstrap the ττ-statistic for (4.29). 
If we bootstrap the series under the null hypothesis of no deterministic time trend and γ = 0, we 
need only construct the bootstrap series. 

 
*
ty  = 0.0049 + 0.3706 *

1ty −  + *
te  



 
 

 Since, *
ty  represents a first difference, it is necessary to create the level of the series as *

tY
= *

1tY − + *
ty . Now, for Step 3, estimate the bootstrap series in the form  

 * * * * * * *
0 1 1 1t t ty a Y t a yγ λ− −= + + +  

 Replicate the experiment many times; on each trial, record the t-statistic for the null 
hypothesis γ* = 0. The value of the t-statistic marking the fifth percentile of all of the 
bootstrapped t-statistics is the 5 percent critical value. In addition, to obtain the bootstrap φ3-
statistic, we can obtain the sample values of F for the null hypothesis γ* = λ* = 0.  

 You can select the initial value of *
1Y as log(RGDP1) plus an error term or a randomly 

drawn value of real GDP. However, as mentioned above, most researchers would actually 
construct a series with an extra 50 observations and then discard the first 50 of the realizations. 
When this process was repeated 10,000 times, only 500 (i.e., 5 percent) of the t-statistics for the 
null hypothesis γ* = 0 had values below –3.43. Given the actual value of the t-statistic of –1.49, 
we cannot reject the null hypothesis γ = 0 at the 5 percent significance level. Moreover, 95 
percent of the F-statistics for the null hypothesis γ* = λ* = 0 were less than 6.38. Recall that the 
sample value φ3 from equation (4.29) was only 2.97. Hence, at the 5 percent significance level, 
we cannot reject the null hypothesis γ = λ = 0.  

 It is also possible to use the bootstrap results to test the null hypothesis λ* = 0. Of course, 
if we know that the series is stationary, the t-statistic of 1.31 indicates that the time trend does 
not belong in the regression. However, we cannot use the usual t-distribution if real GDP is not 
stationary. In total, 5% of the bootstrapped t-statistics for the null hypothesis λ* = 0 were below 
0.615 and 5% were above 3.69. Since the actual value of the t-statistic is 1.31, if we use a 90% 
confidence interval we cannot reject the null hypothesis that the time trend does not appear in 
(4.29).  

Example 3: Bootstrapping Correlated Residuals in a Panel. If the residuals from a panel 
unit root test are highly correlated across equations, you should use bootstrapped critical values. 
The only modification needed from Example 2 is that in a panel unit root test, you estimate a 
vector of equations. The essential requirement is that the residuals need to be sampled in such a 
way that preserves the contemporaneous correlations present in the data. Let {eit} denote the 
regression residual from (4.45) for regression i for time period t. If et denotes the vector of 
residuals for time period t, we can write 

e1 = (e11, e21, e31, … , en1) 
e2 = (e12, e22, e32, … , en2) 
e3 = (e13, e23, e33, … , en3) 
…  
eT = (e1T, e2T, e3T, … , enT) 

  
 Thus, the first bootstrap sample of the residuals might be 

 e
 = (e13, e23, e33, … , en3) 

 
e
= (e15, e25, e35, … , en5) 

     … 



 
 

 
e
= (e12, e22, e32, … , en2) 

 

 The point is that you resample in such a way as to maintain the contemporaneous 
relationships among the regression residuals. As in Example 2, construct a bootstrap series using 
the resampled values of { *

te }. Once you obtain the average value of the t-statistics for the first 
bootstrap sample, repeat the entire process several thousand times.  

 Efron and Tibshirani (1993) is an extremely accessible treatment of bootstrapping. You 
may also download a programming manual that illustrates some bootstrapping techniques (at no 
charge) from my website or from Wiley Web site for this text.   

Footnotes 
1. Another possibility discussed by Efron is to resample the paired (yi, xi) combinations. 

2. A second, although less common, bootstrapping technique used in time series models is called 
“Moving Blocks.” For an AR(p) process, select a length L that is longer than p; L is the length of 
the block. To construct the bootstrap y* series, randomly select a group of L adjacent data points 
to represent the first L observations of the bootstrap sample. In total, you need to select T/L of 
these samples to form a bootstrap sample with T observations. The idea of selecting a block is to 
preserve the time–dependence of the data. However, observations more than L apart will be 
nearly independent. Use this bootstrap sample to estimate the bootstrap coefficients *

0a and *
1a . 

 

Bootstrapping Exercise 
Monte Carlo experiments allow you to replicate a random process so as to calculate the probability of a 
particular type of outcome. In a properly designed experiment, you can obtain the entire probability 
distribution. Consider each of the following: 
a. Suppose you toss a coin and a tetrahedron. For the coin, you get 1 point for a tail and 2 points for a 

head. The faces of the tetrahedron are labeled 1 through 4. For the tetrahedron, you get the number of 
points shown on the downward face. Your total score equals the number of points received for the coin 
and the tetrahedron. Of course, it is impossible to have a score of zero or 1. It is straightforward to 
calculate that the probabilities of scores 3, 4, and 5 equal 0.25 while the probabilities of scores 2 and 6 
equal 0.125.  
i.  Describe how you can design a Monte Carlo experiment to calculate these probabilities. 
ii. If your software package allows you to program such an experiment, find out how close the 

calculated probabilities come to the actual probabilities using 100 replications. How does 
your answer change if you use 1,000 replications?  

b. Replicate the Monte Carlo results that were reported in Section 4 for the t-distribution of a 
unit root.  

 
c. As discussed in Section 4.2, Rule 2 of Sims, Stock and Watson (1990) states:   
 

If the data-generating process contains any deterministic regressors (i.e., an intercept 
or a time trend) and the estimating equation contains these deterministic regressors, 
inference on all coefficients can be conducted using a t−test or an F−test. 



 
 

 
Suppose that a series is generated by the equation ∆yt = a0 + a2t + εt. A researcher unaware of the 
actual nature of the series estimates the equation in the form ∆yt = a0 + ρyt–1 + a2t + εt. Since there is a 
trend and an intercept in the DGP, Rule 2 indicates that it is appropriate to test the null hypothesis ρ = 
0 using a normal distribution.  
i. Perform the following Monte Carlo experiment to verify this result.  

First, select values of a0 and a2. If the assertion is correct, you must be able to select any 
nonzero values for these two coefficients. Generate a series of 100 observations using the 
equation yt = a0 + yt–1 + a2t + εt. Let the initial value of the series be a0.  

Second, estimate the series in the form ∆yt = a0 + ρyt–1 + a2t + εt and obtain the t-statistic 
for the null hypothesis ρ = 0.  

Third, repeat the first two steps 2,000 times. Obtain the distribution for the calculated t-
statistics.  

ii. John obtained the following results using 10,000 Monte Carlo replications 
First percentile:     –2.38               Ninetieth percentile:       1.29 
Fifth percentile:     –1.67               Ninety-fifth percentile:     1.67 
Tenth percentile:   –1.30               Ninety-ninth percentile:    2.33 
Twenty-fifth:        –0.66       

 
Explain how John’s findings are consistent with the claim that it is appropriate to test the 

null hypothesis ρ = 0 using a normal distribution.     
d. In contrast to part c, suppose that a series is generated by the equation ∆yt = εt. A researcher 

unaware of the actual nature of the series estimates the equation in the form ∆yt = a0 + ρyt–1 + 
a2t + εt. Repeat steps 1 to 3 from part c above using a0 = a2 = 0. How close do your results 
come to the Dickey–Fuller ττ-statistic? 

  



 
 

Section 4.4. Determination of the Deterministic Regressors 
Sometimes the appropriate null and alternative hypotheses are unclear. As indicated in the 

text, you do not want to lose power by including a superfluous deterministic regressor in a unit 
root test. However, omitting a regressor that is actually in the data-generating process leads to a 
misspecification error. Fortunately, Sims, Stock and Watson (1990) provide a second rule that is 
helpful in selecting the appropriate set of regressors: 

Rule 2: If the data-generating process contains any deterministic regressors 
(i.e., an intercept or a time trend) and the estimating equation contains these 
deterministic regressors, inference on all coefficients can be conducted using a t-
test or an F-test. This is because a test involving a single restriction across 
parameters with different rates of convergence is dominated asymptotically by the 
parameters with the slowest rates of convergence.  

 While the proof is beyond the scope of this text, the point is that the nonstandard Dickey–
Fuller distributions are needed only when you include deterministic regressors not in the actual 
data-generating process. Hence, if the DGP is known to contain the deterministic trend term a2t, 
the null hypothesis γ = 0 can be tested using a t-distribution if you estimate the model in the form 
of (4.25). However, if the superfluous deterministic trend is included, there is a substantial loss 
of power. As such, papers such as Dolado, Jenkinson, and Sosvilla–Rivero (1990) suggest a 
procedure to test for a unit root when the form of the data-generating process is completely 
unknown. The following is a straightforward modification of the method: 

STEP 1: As shown in Figure A2.1, start with the least restrictive of the plausible models (which 
will generally include a trend and drift) and use the ττ statistic to test the null hypothesis γ 
= 0. Thus, in the most general case, you estimate the model in the form of (4.25) so that 
∆yt = a0 + γyt-1 + a2t + Sbi∆yt-i. Unit root tests have low power to reject the null 
hypothesis; hence, if the null hypothesis of a unit root is rejected, there is no need to 
proceed. Conclude that the {yt} sequence does not contain a unit root. 

STEP 2: If the null hypothesis is not rejected, the next step is to determine whether the trend 
belongs in the estimating equation. Towards this end, you test the null hypothesis a2 = γ = 
0 using the φ3 statistic. If you do not reject the null hypothesis, assume the absence of a 
trend and proceed to Step 3.  

 If you have reached this point, it is because the ττ test indicates that there is a unit root 
and the φ3 test indicates that γ and/or a2 differs from zero. As such, it would seem that 
there is a unit root and a trend. You can gain additional support for this result by 
assuming that there is a unit root and estimating ∆yt = a0 + a2t + Sbi∆yt-i. Since there are 
no I(1) regressors in this specification, the test for the null hypothesis a2 = 0 can be 
conducted using a standard t-test. If you conclude a2 = 0, go to Step 3 since it does not 
appear that there is a trend. If you find that a2 ≠ 0, use (4.25) to test the null hypothesis γ 
= 0 using a t-distribution. Given that the trend belongs in the regression equation, Rule 2 
indicates that the test for γ = 0 can be conducted using a t-distribution. Go no further; if γ 
≠ 0, conclude that the sequence is trend stationary. If γ = 0, conclude that there is a unit 
root (and the {yt} sequence contains a quadratic trend). 

STEP 3: Estimate the model without the trend [i.e., estimate a model in the form of (4.24)]. Test 



 
 

for the presence of a unit root using the τµ statistic. If the null is rejected, conclude that 
the model does not contain a unit root. If the null hypothesis of a unit root is not rejected, 
test for the significance of the intercept by testing the hypothesis a0 = γ = 0 using the φ1 
statistic. If you do not reject the null hypothesis a0 = γ = 0, assume that the intercept is 
zero and proceed to Step 4. Otherwise, estimate ∆yt = a0 + Sbi∆yt-i and test whether a0 = 0 
using a t-distribution. If you find a0 = 0, proceed to Step 4. Otherwise, conclude that the 
process contains an intercept term. In accord with Rule 2, you can use a t-distribution to 
test whether γ = 0 in the regression ∆yt = a0 + γyt-1 + Sbi∆yt-i. If the null hypothesis of a 
unit root is rejected, conclude that the {yt} sequence stationary around a non-zero mean. 
Otherwise, conclude that the {yt} sequence contains a unit root and a drift. 

STEP 4: Estimate a model without the trend or drift; i.e., estimate a model in the form of (4.23). 
Use τ to test for the presence of a unit root. If the null hypothesis of a unit root is rejected, 
conclude that the {yt} sequence does not contain a unit root. Otherwise, conclude that the 
{yt} sequence contains a unit root. 

[Insert Figure A2.1 Here] 
 Remember, no procedure can be expected to work well if it is used in a completely 

mechanical fashion. Plotting the data is usually an important indicator of the presence of 
deterministic regressors. The interest rate series shown in Figure 4.2 can hardly be said to 
contain a deterministic trend. Moreover, theoretical considerations might suggest the appropriate 
regressors. The efficient market hypothesis is inconsistent with the presence of a deterministic 
trend in an asset’s return. Similarly, in testing for PPP you should not begin using a deterministic 
time trend. However, the procedure is a sensible way to test for unit roots when the form of the 
data-generating process is completely unknown.  

GDP and Unit Roots 
Although the methodology outlined in Figure A2.1 can be very useful, it does have its 

problems. Each step in the procedure involves a test that is conditioned on all the previous tests 
being correct; the significance level of each of the cascading tests is impossible to ascertain.  

 The procedure and its inherent dangers are nicely illustrated by trying to determine if the 
real GDP data shown in Figure 4.1 has a unit root. It is a good idea to replicate the results 
reported below using the data in RGDP.XLS. Using quarterly data over the 1947Q1 – 2012Q4 
period, the correlogram of the logarithm of real GDP exhibits slow decay. At the end of Section 
2, the logarithmic first difference of the series was estimated as 

 ∆lrgdpt = 0.0049 + 0.3706∆lrgdpt–1   (A2.1) 
                        (6.80)       (6.44)  
 

 The model is well estimated in that the residuals appear to be white noise and all 
coefficients are of high quality. For our purposes, the interesting point is that the {∆lrgdpt} series 
appears to be a stationary process. Integrating suggests that {lrgdpt} has a stochastic and a 
deterministic trend. The issue here is to determine whether it was appropriate to difference the 
log of real GDP. Towards this end, consider the augmented Dickey–Fuller equation with t-
statistics in parentheses: 



 

 

 lrgdpt = 0.1248 + 0.0001t  0.0156lrgdpt–1 + 0.3663lrgdpt–1  (A2.2) 
                (1.58)      (1.31)      (1.49)            (6.26)        

 
 As in Step 1, we estimate the least restrictive model; as such, (A2.2) contains an intercept 

and a deterministic trend. The point estimates of (A2.2) suggest that the real GDP is trend 
stationary. However, the issue is to formally test the statistical significance of the null hypothesis 
 = 0. The t-statistic for the null hypothesis  = 0 is –1.49. Critical values with exactly 244 usable 
observations are not reported in the Dickey–Fuller table. However, with 262 observations, the 
critical value of  at the 10 percent and 5 percent significance levels are –3.13 and –3.43, 
respectively. At the 5 and 10 percent levels, we cannot reject the null of a unit root. However, the 
power of the test may have been reduced due to the presence of an unnecessary time trend and/or 
drift term. In Step 2, we use the 3 statistic to test the joint hypothesis a2 =  = 0. The sample 
value of F for the restriction is 2.97. Since the critical value of 3 is 6.34 at the 5 percent 
significance level, it is possible to conclude that the restriction a2 =  = 0 is not binding. Thus, we 
can proceed to Step 3 and estimate the model without the trend. Consider the following equation: 

 lrgdpt = 0.0215 – 0.0019 lrgdpt–1 + 0.3539lrgdpt–1 (A2.3) 
           (2.64)   (–2.05)                  (6.12) 
 

 In (A2.3), the t-statistic for the null hypothesis  = 0 is –2.05. Since the critical value of 
the  statistic is –2.88 at the 5 percent significance level, the null hypothesis of a unit root is not 
rejected at conventional significance levels. Again, the power of this test will have been reduced 
if the drift term does not belong in the model. To test for the presence of the drift, use the 1 
statistic. The sample value of F for the restriction a0 =  = 0 is 25.49. Since 25.49 exceeds the 
critical value of 4.63, we conclude that the restriction is binding. Either  ≠ 0 (so there is not a 
unit root), a0 ≠ 0 (so there is not an intercept term), or both  and a0 differ from zero.  

 In reality, any sensible researcher would stop at this point. However, since the point of 
this section is to illustrate the procedure, test for the presence of the drift using (A2.1). Given the 
t-statistic of 6.80, we reject a0 = 0 using a t-distribution. Hence, (A2.3) is our final testing 
regression. Since we are sure that the intercept belongs in the model, Rule 2 indicates that we can 
test the null hypothesis  = 0 using a t-distribution. This is where the methodology runs into a bit 
of trouble. Given that the t-statistic for the coefficient of lrgdpt−1 is –2.05, at the 5% level we can 
conclude that the series does not have a unit root. Nevertheless, the result is nonsense since the 
implication is that lrgdpt is stationary around a time invariant mean.  

  



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

1. Estimate ∆yt = a0 + γyt-1 + a2t + Sb∆yt-i + εt. Useττ to test γ = 0.  

No 

3. Estimate ∆yt = a0 + γyt-1 + S∆yt-i + εt . Use τµ to test γ = 0.  

Is γ = 0? Conclude no unit root 
No 

Yes 

Is γ = 0? Conclude no unit root 

Yes 

2. Is γ = a2 = 0 using φ3? 

Yes 

No 

Estimate ∆yt = a0 + a2t + Sb∆yt-i + εt  
Is a2 = 0 using t-dist.? 

Yes Go back to to Step 1 

Test γ = 0 using t-dist. 

No 

Is γ = a0 = 0 using φ1? 
No 

Estimate ∆yt = a0 + Sb∆yt-i + εt  
Is a0 = 0 using t-test? 

Go to Step 2 

Test γ = 0 using t-dist. 

No 

Yes 

4. Estimate ∆yt = γyt-1 + S∆yt-i + εt . Use τ to test γ = 0.  

Figure A2.1: A Procedure to Test for Unit Roots 



 
 

Section 4.5 The Unobserved Components Decomposition 
The Beveridge and Nelson (1981) decomposition has proven especially useful in that it provides 
a straightforward method to decompose any ARIMA(p, 1, q) process into a temporary and a 
permanent component. However, it is important to note that the Beveridge and Nelson 
decomposition is not unique. Equations (4.53) and (4.54) provide an example in which the 
Beveridge and Nelson decomposition forces the innovation in the trend and the stationary 
components to have a perfect negative correlation. 

 In fact, this result applies to the more general ARIMA(p, 1, q) model. Obtaining the 
irregular component as the difference between yt and its trend forces the correlation coefficient 
between the innovations to equal –1. However, there is no reason to constrain the two 
innovations in the two components to be perfectly correlated. To illustrate the point, consider the 
random-walk plus noise plus drift (i.e., the trend plus noise model) introduced in Section 1: 

0 0
1

t

t i t
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y y a t ε η
=

= + + +∑  

  The deterministic portion of the trend is y0 + a0t, the stochastic trend is Sεi and the noise 
component is ηt. The stochastic trend and the noise components are uncorrelated since we 
assumed that E(εiηt) = 0. Thus, the Beveridge and Nelson methodology would incorrectly 
identify the trend and the irregular components because it would force the two innovations to 
have a correlation of −1.  

 Now consider an alternative identification scheme that relies on an unobserved 
components (UC) model. A UC model posits that a series is comprised of several distinct, but 
unobservable components (such as the εt and ηt shocks in the random-walk plus noise model). 
The goal is identify the shocks by matching the moments of the UC specification to those from 
an estimated ARIMA model. In Section 2, the trend plus noise model was shown to have an 
equivalent ARIMA(0, 1, 1) representation such that   

   E∆yt = 0;       var(∆yt) = σ2 + 2 2
ησ  , and   cov(∆yt, ∆yt–1) = – 2

ησ  (4.58) 

 Hence, it is possible to represent the first difference of the trend plus noise model as the 
MA(1) process:  

∆yt = a0 + et + b1et–1                                                                      (4.59)  

where et is an independent white-noise disturbance. The notation et is designed to indicate that 
shocks to ∆yt come from two sources: εt and ητ. The problem is to decompose the estimated 
values of {et} into these two source components. 

 In this instance, it is possible to recover, or identify, the individual {εt} and {ηt} shocks 
from the estimation of (4.59). The appropriate use of the Box–Jenkins methodology will yield 
estimates of a0, b1 and the elements of the {et} sequence. Given the coefficient estimates, it is 
possible to form  



 
 

var(∆yt) = var(et + b1et–1) = (1 + b1)2var(et) 

and 

cov(∆yt, ∆yt–1) = b1var(et) 

 However, these estimates of the variance and covariance are not arbitrary; for (4.59) to 
satisfy the restrictions of (4.58) it must be the case that  

(1 + b1)2var(et) = σ2 + 2ση
2 

and 

b1var(et) = –ση
2 

 Now that we have estimated b1 and var(et), it is possible to recover σ2 and ση
2 from the 

data. The individual values of the {εt} and {ηt} sequences can be recovered as well. From the 
forecast function, Etyt+1 = yt + a0 – ηt. Hence, it is possible to use one-step-ahead forecasts from 
(4.59) to find Et∆yt+1 = a0 + b1et, so that Etyt+1 = yt + a0 + b1et. Since the two forecasts must be 
equivalent, it follows that  

b1et = –ηt 

 Thus, the estimated values of b1et can be used to identify the entire {ηt} sequence. Given 
{et} and {ηt}, the values of {εt} can be obtained from ∆yt = a0 + εt + ∆ηt. For each value of t, 
form εt = ∆yt – a0 – ∆ηt using the known values of ∆yt and the estimated values of a0 and ∆ηt.  

 The point is that it is possible to decompose a series such that the correlation between the 
trend and irregular components is zero. The example illustrates an especially important point. To 
use this method to decompose a series into a random walk plus drift and a stationary irregular 
component, it is necessary to specify the correlation coefficient between innovations in the trend 
and the irregular components. We have seen two ways to decompose an ARIMA(0, 1, 1) model. 
The Beveridge and Nelson technique assumes that are trend and cycle are perfectly correlated, 
while the UC decomposition adds the restriction 

Eεtηt = 0 

 In fact, the correlation coefficient between the two components can be any number in the 
interval –1 to +1. Without the extra restriction concerning the correlation between the 
innovations, the trend and stationary components cannot be identified; in a sense, we are an 
equation short. The assumption that εt and ηt are uncorrelated places restrictions on the 
autoregressive and moving average coefficients of ∆yt. For example, in the pure random walk 
plus noise model, b1 must be negative. To avoid estimating a constrained ARIMA model, 
Watson (1986) estimates the trend and the irregular terms as unobserved components  

 Watson (1986) decomposes the logarithm of GNP using the Beveridge and Nelson 
decomposition and using the UC method. Using a Beveridge and Nelson decomposition, he 
estimates the following ARIMA(1, 1, 0) model (with standard errors in parenthesis): 

∆yt = 0.005 + 0.406∆yt–1 + εt  var(εt) = 0.01032 

                                      (0.001)  (0.077) 



 
 

    
 Using the UC method such that the innovations in the trend and irregular components are 

uncorrelated, Watson estimates GNP as the sum of a trend (τt) plus a cyclical term (ct). The trend 
is simple a random walk plus drift and the cyclical component is an AR(2) process.  

      τt = 0.008 + τt−1 + ετ                        var(εt) = 0.00572 

                                             (0.001)  
 

ct = 1.501ct−1 − 0.577ct−2   var(ηt) = 0.00762 

                      (0.121)      (0.125)  
 

 The short-term forecasts of the two models are quite similar. The standard error of the 
one-step-ahead forecast of UC model is slightly smaller than that from the Beveridge and Nelson 
decomposition: (σ2 + ση

2)1/2 ≅ 0.0095 is slightly smaller than 0.0103. However, the long-run 
properties of the two models are quite different. For example, writing ∆yt = (0.005 + εt)/(1–
0.406L) yields the impulse response function using Beveridge and Nelson decomposition. The 
sum of the coefficients for this impulse response function is 1.68. Hence, a one-unit innovation 
will eventually increase log(GNP) by a full 1.68 units. Since all coefficients are positive, 
following the initial shock, yt steadily increases to its new level. In contrast, the sum of the 
impulse response coefficients in the UC model is about 0.57. All coefficients beginning with lag 
4 are negative. As such, a one-unit innovation in yt has a larger effect in the short run than in the 
long run. Most importantly, the Beveridge and Nelson cycle has a small amplitude and is less 
persistent than the UC cycle.  

 Morley, Nelson and Zivot (2003) update Watson’s (1986) study and find similar results 
using data through 1998Q2. They also show how to use the Kalman filter to estimate the 
correlation between εt and ηt. This is a clear advantage over imposing a particular value for 
Eεtηt. It turns out that the estimated correlation is –0.9062 so that the Beveridge and Nelson 
cycle quite reasonable. It is going too far afield to explain the Kalman filter and state-space 
modeling here.  

 

  



 
 

Section 4.6: Phillips-Perron Test Statistics 
Most people now use the Dickey-Fuller test in conjunction with the MAIC when a large and 

negative MA term is suspected to be in the data generating process. However, since the Phillips-
Perron (1988) test is still popular in such circumstances this modification of the Dickey-Fuller test 
merits some discussion.  

The distribution theory supporting the Dickey-Fuller tests assumes that the errors are 
statistically independent and have a constant variance.  In using test, care must be taken to ensure 
that these assumptions are not violated.  Phillips and Perron (1988) developed a generalization of 
the Dickey-Fuller procedure which allows for fairly mild assumptions concerning the distribution 
of the errors.   

The Phillips-Perron (1988) statistics modify the Dickey-Fuller t-statistics to account for 
heterogeneity in the error process. The Phillips-Perron (1988) test was a popular unit root test for 
the case of a large and negative moving average term in the data generating process. Suppose that 
we observe the first 1, 2, ... , T realizations of the {yt} sequence and estimate the regression 
equation:  

 yt = µ + b(t  − T/2) + ayt-1 + µt 

where µ, b, and a are the conventional least squares regression coefficients.  The error term is 
denoted by µt to indicate that the series may be serial correlated. Phillips and Perron (1984) derive 
test statistics for the regression coefficients under the null hypothesis that the data is generated by:  

 yt = yt-1 + µt 

Do not be deceived by the apparent simplicity of these two equations.  In actually, they are far 
more general than the type of data generating process allowable by the Dickey-Fuller procedure.  
For example, suppose that the {μt} sequence is generated by the autoregressive process μt = 
[C(L)/B(L)]εt where B(L) and C(L) are polynomials in the lag operator.  Given this form of the 
error process, we can write the first equation in the form used in the Dickey-Fuller tests; i.e.,  

 B(L)yt = µB(L) + B(L)b(t  − T/2) + aB(L)yt-1 + C(L)εt.  

Thus, the Phillips-Perron procedure can be applied to ARIMA order processes in the same way 
as the Dickey-Fuller tests. The difference between the two tests is that there is no requirement that 
the disturbance term be serially uncorrelated or homogeneous. Instead, the Phillips-Perron test 
allows the disturbances to be weakly dependent and heterogeneously distributed.   

 Let tμ, tα, and tβ be the usual t-test statistics for the null hypotheses µ = 0, a = 1, and b = 0, 
respectively. In essence, Phillips and Perron (1988) use robust standard errors so as to modify the 



 
 

Dickey-Fuller statistics to allow for weakly dependent errors. The expressions are extremely 
complex; to actually derive them would take us far beyond the scope of this book.  However, many 
statistical time-series software packages now calculate these statistics so they are directly available. 
The modified statistics are:  

3 1/ 2 2 2( ) ( / ) ( / 4 3 )( )T T TZ t S t T D Sα ω α ω ωσ σ σ= − −  
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where D = det(x′x), the determinant of the regressor matrix x, 
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S2 is the standard error of the regression, 
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and ω is the number of estimated autocorrelations. 

 Note that S2 and 2
Tωσ are consistent estimates of 2

µσ  = lim E( )u2
t  and σ2 = lim E( )T-1 S2

T

where ST  = ∑µT and all summations run over t. For the joint hypothesis β = 0 and α = 1, use 
their Z(φ3) statistic. Fortunately, many software packages calculate these statistics. The critical 
values for the Phillips-Perron statistics are precisely those given for the Dickey-Fuller tests.  For 
example, the critical values for Z(ta) and Z(tb) are those given in the Dickey-Fuller tables under the 
headings τµ and ττ, respectively.  The critical values of Z(φ3) are given by the Dickey-Fuller φ3 
statistic.  

Foreign Exchange Market Efficiency.  Corbae and Ouliaris (1986) used Phillips-Perron tests 
to determine whether exchange rates follow a random walk and whether the return to forward 
exchange market speculation contains a unit root.  Denote the spot dollar price of foreign exchange 
on day t as st.  An individual at t can also buy or sell foreign exchange forward.  A 90-day forward 
contract requires, that on day t+90, the individual take delivery (or make payment) of a specified 
amount of foreign exchange in return for a specified amount of dollars.  Let ft denote the 90-day 
forward market price of foreign exchange purchased on day t.  On day t, suppose that an individual 
speculator buys forward pounds at the price: ft = $2.00/pound.  Thus, in 90 days the individual is 
obligated to provide $200,000 in return for £100,000.  Of course, the agent may choose to 
immediately sell these pounds on the spot market.  If on day t+90, the spot price happens to be st+90 
= $2.01/pound, the individual can sell the £100,000 for $201,000; ignoring any transactions costs, 
the  individual earns a profit of $1000.  In general, the profit on such a transaction will be st+90 - ft 



 
 

multiplied by the number of pounds transacted.  (Note that profits will be negative if st+90 < ft ).    
Of course, it is possible to speculate by selling forward pounds too. An individual selling 90-day 
forward pounds on day t will be able to buy them on the spot market at st+90.  Here, profits will be ft 
- st+90 multiplied by the number of pounds transacted.  The efficient market hypothesis maintains 
that the expected profit or loss from such speculative behavior must be zero.  Let Etst+90 denote the 
expectation of the spot rate for day t+90 conditioned on the information available on day t.  Since 
we actually know ft on day t, the efficient market hypothesis for forward exchange market 
speculation can be written as: 

 Etst+90 = ft. 

or: 

 st+90 - ft = pt. 

where: pt = per unit profit from speculation; and Etpt = 0.  

 Thus, the efficient market hypothesis requires that for any time period t, the 90-day forward 
rate (i.e., ft) be an unbiased estimator of the spot rate 90 days from t.  Suppose that a researcher 
collected weekly data of spot and forward exchange rates.  The data set would consist for the 
forward rates ft, ft+7, ft+14, ... and the spot rates st, st+7, st+14, .... . Using these exchange rates, it is 
possible to construct the sequence: st+90 - ft = pt, st+7+90 - ft+7 = pt+7, st+14+90 - ft+14 = pt+14, ... .  
Normalize the time period to 1 week so that y1  = pt, y2 = pt+7, y3 = pt+14, ... and consider the 
regression equation: 

 yt = a0 + a1yt-1 + a2t + μt 

 The efficient market hypothesis asserts that ex ante expected profit must equal zero; hence, 
using quarterly data it should be the case that a0 = a1 = a2 = 0.   However, the way that the data set 
was constructed means that the residuals will be correlated.   As Corbae and Ouliaris (1986) point 
out, suppose that there is relevant exchange market "news" at date T.  Agents will incorporate this 
news into all forward contracts signed in periods subsequent to T. However, the realized returns for 
all pre-existing contracts will be affected by the news.  Since there are approximately 13 weeks in a 
90 day period, we can expect the μt sequence to be an MA(12) process.  Although ex ante expected 
returns may be zero, the ex post returns from speculation at t will be correlated with the returns 
from those engaging forward contracts at weeks t+1 through t+12. 

 Meese and Singleton (1982) assumed white noise disturbances in using a Dickey-Fuller test 
to study the returns from forward market speculation. One surprising result was that the return 
from forward speculation in the Swiss franc contained a unit root.  This finding contradicts the 
efficient market hypothesis since it implies the existence of a permanent component in the 



 
 

sequence of returns.  However, the assumption of white noise disturbances is inappropriate if the 
{μt} sequence is an MA(12) process.  Instead, Corbae and Ouliaris use the more appropriate 
Phillips-Perron procedure to analyze foreign exchange market efficiency; some of their results are 
contained in the table below 

 First consider the test for the unit root hypothesis (i.e., a1 = 1).  All estimated values of a1 
exceed 0.9; the first-order autocorrelation of the returns from speculation appear to be quite high.  
Yet, given the small standard errors, all estimated values are over four standard deviations from 
unity.  At the 5% significance level, the critical values for a test of a1 = 1, is -3.43.  Note that this 
critical value is the Dickey-Fuller ττ statistic with 250 observations.  Hence, as opposed to Meese 
and Singleton (1982), Corbae and Ouliaris are able to reject the null of a unit root in all series 
examined.  Thus, shocks to the return from forward exchange market speculation do not have 
permanent effects.  

 
 A second necessary condition for the efficient market hypothesis to hold is that the 

intercept term a0 equal zero.  A non-zero intercept term suggests a predictable gap between the 
forward rate and the spot rate in the future.  If a0 ≠ 0, on average, there are unexploited profit 
opportunities.  It may be that agents are risk averse or that profit maximizing speculators are not 
fully utilizing all available information in determining their forward exchange positions.  In 
absolute value, all of the Z-statistics are less than the critical value so that Corbae and Ouliaris 
cannot reject the null a0 = 0. In the same way, they are not able to reject the null hypothesis of no 
deterministic time trend (i.e., that a2 = 0).  The calculated Z(tb) statistics indicate that the estimated 
coefficients of the time trend are never more than 1.50 standard errors from zero.  

 
 Returns To Forward Speculation 

       a0       a1        a2 
Switzerland -0.117E-2 

(0.106E-2) 
Z(tµ)=  -1.28 

0.941 
(0.159E-1) 
Z(ta) = -4.06 

-0.111E-4 
(0.834E-5) 
Z(tb) =  -1.07 

Canada -0.651E-3 
(0.409E-3) 
Z(tµ)=  -1.73 

0.907 
(0.191E-1) 
Z(ta) = -5.45 

0.116E-5 
(0.298E-5) 
Z(tb) =  -1.42 

United Kingdom -0.779E-3 
(0.903E-3) 
Z(tµ)=  -.995 

0.937 
(0.163E-1) 
Z(ta) = -4.69 

-0.132E-4 
(0.720E-5) 
Z(tb) = -1.50 

Notes: Standard errors are in parenthesis and Z(tµ) and Z(tb) are the Phillips-Perron adjusted t-statistics 
for the hypothesis that a0 = 0 and a2 = 0, respectively. Z(ta) is the Phillips-Perron adjusted t-statistic for the 
hypothesis that a1 = 1.  

  

  



 
 

At this point, you might wonder whether it would be possible to perform the same sort of 
analysis using an Augmented Dickey-Fuller (ADF) test.  After all, Said and Dickey (1984) showed 
that the ADF test can be used when the error process is a moving average.   The desirable feature 
of the Phillips-Perron test is that it allows for a weaker set of assumptions concerning the error 
process.  Also, Monte Carlo studies find that the Phillips-Perron test has greater power reject a 
false null hypothesis of a unit root.  However, there is a cost entailed with the use of weaker 
assumptions.  Monte Carlo studies have also shown that in the presence of negative moving 
average terms, the Phillips-Perron test tends to reject the null of a unit root whether or not the 
actual data generating process contains a negative unit root.  It is preferable to use the ADF test 
when the true model contains negative moving average terms and to use the Phillips-Perron test 
when the true model contains positive moving average terms.   

 In practice, the choice of the most appropriate test can be difficult since you never know 
the true data generating process.  A safe choice is to use both types of unit roots tests.  If they 
reinforce each other, you can have confidence in the results.  Sometimes economic theory will be 
helpful in that it suggests the most appropriate test.  In the Corbae and Ouliaris example, excess 
returns should be positively correlated; hence, the Phillips-Perron test is a reasonable choice. 
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ENDNOTES TO CHAPTER 5 

1.  In the identification process, we are primarily interested in the shape, not the height, of the cross-
correlation function. It is useful to standardize the covariance by dividing through by 

2
zσ ; the shape of 

the correlogram is proportional to the standardized covariance. The text follows the procedure used by 
most software packages by plotting the standardized cross-covariances.  

2.  We were able to obtain quarterly data from 1970Q1 to 1988Q4 for Austria, Canada, Denmark, 
Finland, France, West Germany, Greece, Italy, the Netherlands, Norway, the United Kingdom, and the 
United States. The International Monetary Fund’s Balance of Payments Statistics reports all data in 
Special Drawing Rights (SDR). The dependent variables were the logarithms of each nation’s 
revenues divided by the sum of the revenues for all twelve countries.  

3.  Tourism is highly seasonal; we tried several alternative deseasonalization techniques. The results 
reported here were obtained using seasonal dummy variables. Hence, yt represents the deseasonalized 
logarithmic share of tourism receipts. The published paper reports results using quarterly differencing. 
Using either type of deseasonalization, the final results were similar.  

4.  It is easily verified that this representation implies that ρ12 = 0.8. By definition, the correlation 
coefficient ρ12 is defined to be σ12/(σ1σ2) and the covariance is Ee1te2t = σ12. If we use the numbers in 
the example, Ee1te2t = E[εzt(εyt + 0.8εzt)] =  0.8 2

zσ . Since the decomposition equates var(e2t) with 2
zσ , it 

follows that ρ12 = 0.8 if 2
1σ  = 2

2σ . 

5.  Note that γ1 cannot equal zero if {yt} is I(1). If γ1 = 0, yt = a12∆yt–1 + b12∆zt–1 + εt, the equation is 
unbalanced. The left-hand side contains the I(1) variable yt while the right-hand side contains only the 
three stationary variables ∆yt, ∆zt, and εt.  

6.  Since a key assumption of the model of the technique is that E(ε1tε2t) = 0, you might wonder how it is 
possible to assume that aggregate demand and supply shocks are independent. After all, if the 
stabilization authorities follow a feedback rule, aggregate demand will change in response to aggregate 
supply shocks. The key to understanding this apparent contradiction is that ε1t is intended to be the 
orthogonalized portion of the demand shock, i.e., the portion of the demand shock that does not change 
in response to aggregate supply. Cover, Enders and Hueng (2006) and Enders and Hurn (2007) show 
how this assumption can be relaxed.  

7.    Since two of the restrictions contain squared terms, there will be a positive value and an equal but 
opposite negative value for some of the coefficients. In Blanchard and Quah’s example, if c11(0) is 
positive, positive demand shocks have a positive effect on output, and if c11(0) is negative, the 
positive shock has a negative effect on output. Taylor (2003) considers the problem of selecting 
among the alternative sets of solutions. 

  



 
 

SECTION 5.1: A SIMPLE VAR EXAMPLE 

EXAMPLE OF A SIMPLE VAR:  TERRORISM AND TOURISM 
IN SPAIN 
In Enders and Sandler (1991), we used the VAR methodology to estimate the impact of terrorism 
on tourism in Spain during the period from 1970 to 1988. Most transnational terrorist incidents in 
Spain during this period were perpetrated by left-wing groups, which included the Anti-Fascist 
Resistance Group of October 1 (GRAPO), the ETA, the now defunct International Revolutionary 
Armed Front (FRAP), and Iraultza. Most incidents are attributed to the ETA (Basque Fatherland 
and Liberty) and its splinter groups, such as the Autonomous Anti-Capitalist Commandos 
(CAA). Rightwing terrorist groups included the Anti-Terrorist Liberation Group (GAL), the 
Anti-Terrorism ETA, and the Warriors of Christ the King. Catalan independence groups, such as 
Free Land (Terra Lliure) and Catalan Socialist Party for National Liberation, were active in the 
late 1980s and often targeted U.S. businesses.  

The transfer function model of Section 3 may not be appropriate because of feedback 
between terrorism and tourism. If high levels of tourism induce terrorist activities, the basic 
assumption of the transfer function methodology is violated. In fact, there is some evidence that 
the terrorist organizations in Spain target tourist hotels in the summer season. Since increases in 
tourism may generate terrorist acts, the VAR methodology allows us to examine the reactions of 
tourists to terrorism and the reactions of terrorists to tourism. We can gain some additional 
insights into the interrelation between the two series by performing Granger causality tests both 
of terrorism on tourism and of tourism on terrorism. Impulse-response analysis can quantify and 
graphically depict the time path of the effects of a typical terrorist incident on tourism.  

We assembled a time series of all publicly available transnational terrorist incidents that took 
place in Spain from 1970 through 1988. In total, there are 228 months of observation in the time 
series; each observation is the number of terrorist incidents occurring in that month. The tourism 
data are taken from various issues of the National Statistics Institute’s (Estadistic Institute 
Nacional) quarterly reports. In particular, we assemble a time series of the number of foreign 
tourists per month in Spain for the 1970–1988 period.  

Empirical Methodology 
Our basic methodology involves estimating tourism and terrorism in a vector autoregression 
(VAR) framework. Consider the following system of equations: 

 

nt = a10 + A11(L)nt–1 + A12(L)it–1 + e1t                                                          (5.47) 

                it = a20 + A21(L)nt–1 + A22(L)it–1 + e2t                             (5.48) 

 

where     nt  = the number of tourists visiting Spain during time period t 
               it   = the number of transnational terrorist incidents in Spain during t 

              ai0  = the vectors containing a constant, eleven seasonal (monthly) dummy                                    



 
 

variables, and a time trend 

              Aij = the polynomials in the lag operator L 
              eit  = independent and identically distributed disturbance terms such that E(e1te2t) is not                         
necessarily zero 

Although Sims (1980) recommended against the use of a deterministic time trend, we 
decided not to heed this advice. We experimented with several alternative ways to model the 
series; the model including the time trend had the best diagnostic statistics. Other variants 
included differencing (5.47) and (5.48) and simply eliminating the trend and letting the random 
walk plus drift terms capture any nonstationary behavior. We were also concerned that the 
number of incidents had a large number of zeroes (and could not be negative), so that the 
normality assumption was violated.  

The polynomials A12(L) and A21(L) in (5.47) and (5.48) are of particular interest. If all of the 
coefficients of A21(L) are zero, then knowledge of the tourism series does not reduce the forecast 
error variance of terrorist incidents. Formally, tourism would not Granger cause terrorism. 
Unless there is a contemporaneous response of terrorism to tourism, the terrorism series evolves 
independently of tourism. In the same way, if all of the coefficients of A12(L) are zero, then 
terrorism does not Granger cause tourism. The absence of a statistically significant 
contemporaneous correlation of the error terms would then imply that terrorism cannot affect 
tourism. If, instead, any of the coefficients in these polynomials differ from zero, there are 
interactions between the two series. In the case of negative coefficients of A12(L), terrorism 
would have a negative effect on the number of foreign tourist visits to Spain. 

Each equation was estimated using lag lengths of 24, 12, 6, and 3 months (i.e., for four 
estimations, we set p = 24, 12, 6, and 3). Because each equation has identical right-hand side 
variables, ordinary least squares (OLS) is an efficient estimation technique. Using χ2 tests, we 
determined that a lag length of 12 months was most appropriate (reducing lag length from 24 to 
12 months had a χ2 value that was significant at the 0.56 level, whereas reducing the lag length 
to 6 months had a χ2 value that was significant at the 0.049 level). The AIC indicated that 12 lags 
were appropriate, whereas the SBC suggested we could use only 6 lags. Since we were using 
monthly data, we decided to use the 12 lags. 

To ascertain the importance of the interactions between the two series, we obtained the 
variance decompositions. The moving-average representations of Equations (5.47) and (5.48) 
express nt and it as dependent on the current and past values of both {e1t} and {e2t} sequences: 
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where c0 and d0 are vectors containing constants, the 11 seasonal dummies, and a trend; and c1j, 
c2j, d1j, and d2j are parameters. 



 
 

Because we cannot estimate (5.49) and (5.50) directly, we used the residuals of (5.47) and 
(5.48) and then decomposed the variances of nt and it into the percentages attributable to each 
type of innovation. We used the orthogonalized innovations obtained from a Choleski 
decomposition; the order of the variables in the factorization had no qualitative effects on our 
results (the contemporaneous correlation between e1t and e2t was –0.0176). 

Empirical Results 
The variance decompositions for a 24-month forecasting horizon, with significance levels in 
parentheses, are reported in Table A5.1. As expected, each time series explains the 
preponderance of its own past values; nt explains over 91 percent of its forecast error variance, 
while it explains nearly 98 percent of its forecast error variance. It is interesting that terrorist 
incidents explain 8.7 percent of the forecast error variance of Spain’s tourism, while tourism 
explains only 2.2 percent of the forecast error variance of terrorist incidents. More important, 
Granger causality tests indicate that the effects of terrorism on tourism are significant at the 
0.006 level, whereas the effects of tourism on terrorism are not significant at conventional levels. 
Thus, causality is unidirectional: Terrorism affects tourism but not the reverse. We also note that 
the terrorism series appears to be autonomous in the sense that neither series significantly 
explains the forecast error variance of it. This result is consistent with the notion that terrorists 
randomize their incidents so that any one incident is not predictable on a month-to-month basis. 

Table A5.1: Variance Decomposition Percentage of 24-Month Error Variance                 
 _______________________________________________________________ 
      Typical shock in 
  Percent of forecast                    ____________________ 
  error variance in     nt  it 
 _______________________________________________________________ 
 
  nt    91.3  8.7 
      (3 x E-15) (0.006) 
 
  it     2.2  97.8 
      (17.2)  (93.9) 
 _______________________________________________________________ 
 
 Note: The numbers in parentheses indicate the significance level for the joint 

hypothesis that all lagged coefficients of the variable in question can be set equal to 
zero. 

 

Forecasts from an unrestricted VAR are known to suffer from overparameterization. Given 
the results of the variance decompositions and the Granger causality tests, we reestimated (5.47) 
and (5.48) restricting all of the coefficients of A21(L) to equal zero. Because the right-hand 
variables were no longer identical, we reestimated the equations with seemingly unrelated 
regressions (SUR). From the resulting coefficients from the SUR estimates, the effects of a 
typical terrorist incident on Spain’s tourism can be depicted. In terms of the restricted version of 
(5.50), we set all e1t–j and e2t–j equal to zero for j > 0. We then simulated the time paths resulting 
from the effects of a one-unit shock to e2t. The time path is shown in Figure 5.8, where the 



 
 

vertical axis measures the monthly impact on the number of foreign tourists and the horizontal 
axis shows the months following the shock. To smooth out the series, we present the time path of 
a three-month moving average of the simulated tourism response function. 

 
After a “typical” terrorist incident, tourism to Spain begins to decline in the third month. After 
the sixth month, tourism begins to revert to its original level. There does appear to be a rebound 
in months eight and nine. There follows another drop in tourism in month nine, reaching the 
maximum decline about one year after the original incident. Obviously, some of this pattern is 
due to the seasonality in the series. However, tourism slowly recovers and generally remains 
below its preincident level for a substantial period of time. Aggregating all 36 monthly impacts, 
we estimate that the combined effects of a typical transnational terrorist incident in Spain are to 
decrease the total number of foreign visits by 140,847 people. By comparison, a total of 
5,392,000 tourists visited Spain in 1988 alone. 
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Figure A5.1: Tourism response to a terrorist incident 



 
 

 

SECTION 5.2: A SYMMETRY RESTRICTION 

A common assumption in the open-economy macroeconomics literature is that global shocks 
have little influence on current account balances, relative output levels, and real exchange rates. 
The notion underlying this assumption is that global shocks affect all nations equally; in a sense, 
global shocks are like the tides that “cause all boats to rise and fall together.” However, this 
might not be true if nations have different technologies, preferences, and/or factor supplies. In 
Souki and Enders (2008) we use a four-variable structural VAR to obtain a global shock and 
three country-specific shocks. The nature of the VAR is that we allow the global shock to have 
asymmetric effects on the U.S., Japanese and German economies. 

As a first step, we performed unit-root tests on the log levels and on the logarithmic first-
differences of the variables. All six variables contain a unit root but are stationary in first-
differences. We then estimated a three-country model represented by the appropriately 
differenced four-variable VAR: 
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where rgust is the log of the real exchange rate between Germany and the U.S., rjust is the log of 
the real exchange rate between Japan and the U.S., ygust is the log of German/U.S. output, yjust 
is the log of Japanese/U.S. output, ∆ is the difference operator, the Aij(L) are polynomials in the 
lag operator L, and the eit are the regression residuals. Note that the responses of the 
German/Japanese real exchange rate and relative income levels can be obtained from ∆rgust − 
∆rjust and ∆ygust − ∆yjust, respectively. The estimated VAR includes a constant and four lags of 
the first-difference of each variable (the lag length selection is based on a likelihood ratio test). 
The estimation period runs from March 1973 to June 2004. 

We classify the shocks by their consequences, not by their source. After all, almost any shock 
emanates from some particular country. In our classification system, shocks--such as 9/11 or the 
financial crisis beginning in the U.S. housing market--with immediate worldwide consequences 
are global, not country-specific, shocks. The shock is global because of its immediate worldwide 
consequences, not because of its source. The sharp rise and then fall in the price of oil is a global 
shock. In order to ensure that country-specific shocks do not have any immediate worldwide 
consequences, it is necessary to assume that country-specific shocks are orthogonal to each other 
and to the global shock. The discussion implies that it makes sense to decompose the regression 
residuals using the six restrictions a12 = a21 = a32 = a41 = 0, a13 = a23, and a33 = a34. Hence: 
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where εwt is the global (or worldwide) shock in period t, and εit is the country-specific shock for i 
in period t. The nature of the four εit shocks is that they are all i.i.d. zero-mean random variables 
that are mutually uncorrelated in the sense that Et-1εitεkt = 0 for i ≠ k. Moreover, we normalize 
units so that the variance of each structural shock is unity. As such, in this four-variable VAR, 
we have imposed 6 additional restrictions to obtain an exactly identified system.  

To explain, note that an εjt shock has no contemporaneous effect on ∆rgust if a12 = 0 and has 
no contemporaneous effect on ∆ygust if a32 = 0. In the same way, an εgt shock has no 
contemporaneous effect on ∆rjust if a21 = 0 and has no contemporaneous effect on ∆yjust if a41 = 
0. To explain the last two restrictions, notice that the log of the real exchange rate between Japan 
and Germany is rgust − rjust and the log of the German/Japanese output is ygust − yjust. Hence, if 
a13 = a23, the U.S. shock will have no contemporaneous effect on the German/Japanese real 
exchange rate, and if a33 = a34, the U.S. shock will have no contemporaneous effect on the 
German/Japanese output.  

Since we do not restrict a14, a24, a34, or a44 to zero, our identification scheme allows global 
shocks to change relative output levels and real exchange rates. Nevertheless, we do not force 
global shocks to have asymmetric effects. If the standard assumption is correct (so that global 
shocks have only symmetric effects), we should find that all values of ai4 are equal to zero. 
Moreover, the lag structure should be such that global shocks explain none of the forecast error 
variance of real exchange rates and relative outputs. Hence, any findings that our identified 
global shocks affect relative output levels and/or real exchange rates are necessarily due to non-
proportional effects of global shocks. 

The variance decompositions are shown in Table A5.1. The key points are:  

 

• We find little evidence that third-country effects are important. The maximal impact is 
that the U.S.-shock explains 12% of the forecast error variance of the Japanese/German 
industrial production ratio.  
 
• Global shocks have little effect on relative output levels. As such, the conventional 
wisdom is correct in that global shocks do tend to affect industrial production levels 
proportionately.  
 
• Global shocks explain almost all of the movements in the DM/Dollar real exchange rate 
and sizable portions of the movements in the other two real rates. As such, our identified 
global shocks alter relative prices but not relative outputs.   

 



 
 

A natural interpretation is that preferences differ across nations. Even if global productivity 
shocks cause output levels to move together, differences in preferences can induce relative price 
changes. After all, residents of different nations will use their altered income levels to buy 
different baskets of goods and services. For our purposes, the main point is that a combination of 
coefficient restrictions and symmetry restrictions can be used to identify structural shocks.  

Table A5.1: Variance Decompositions Using Structural Shocks 
 
 
 Percent of Forecast Error Variances due to Germany shock 
Horizon ∆rgus ∆rjus ∆rgj ∆ygus ∆yjus ∆ygj 
1-quarter 1.977 0.000 1.002 63.495 0.000 99.486 
4-quarter 4.427 0.630 7.459 61.496 0.589 90.711 
8-quarter 5.287 4.851 9.742 63.795 1.563 87.010 
 Percent of Forecast Error Variances due to Japanese shock 
Horizon ∆rgus ∆rjus ∆rgj ∆ygus ∆yjus ∆ygj 
1-quarter 0.000 72.366 81.365 0.000 1.483 0.420 
4-quarter 2.648 68.731 75.597 2.125 4.539 0.473 
8-quarter 3.875 64.193 73.175 2.196 4.603 0.833 
 Percent of Forecast Error Variances due to U.S.shock 
Horizon ∆rgus ∆rjus ∆rgj ∆ygus ∆yjus ∆ygj 
1-quarter 1.948 1.645 0.000 35.600 95.024 0.000 
4-quarter 2.713 2.588 2.029 34.709 92.028 7.711 
8-quarter 2.782 3.294 2.741 32.388 90.914 11.161 
 Percent of Forecast Error Variances due to Global shock 
Horizon ∆rgus ∆rjus ∆rgj ∆ygus ∆yjus ∆ygj 
1-quarter 96.076 25.990 17.633 0.905 3.492 0.094 
4-quarter 90.212 28.052 14.915 1.669 2.844 1.106 
8-quarter 88.056 27.661 14.342 1.621 2.920 0.996 
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ENDNOTES TO CHAPTER 6 
1. To include an intercept term, simply set all realizations of one {xit} sequence equal to 

unity. In the text, the long-run relationship with an intercept will be denoted by b0 + b1x1t + … + 
bnxnt = 0. Also note that the definition rules out the trivial case in which all elements of b equal 
zero. Obviously if all the bi = 0, bxt' = 0.  

2. Equation (6.18) can be written as λ2 = a1λ + a2 where a1 = (a11 + a22) and a2 = (a12a21 – 
a11a22). Now refer all the way back to Figure 1.5 in Chapter 1. For λ1 = 1, the coefficients of 
(6.18) must lie along line segment BC. Hence, a1 + a2 = 1, or a11 + a22+ a12a21 – a11a22 = 1. 
Solving for a11 yields (6.19). For λ2 < 1, the coefficients must lie inside region A0BC. Given 
(6.19), the condition a2 – a1 = 1 is equivalent to that in (6.21). 

3. Another interesting way to obtain this result is to refer back to (6.14). If a12 = 0, yt = a11yt–1 
+ εyt. Imposing the condition that {yt} is a unit root process is equivalent to setting a11 = 1 so that 
∆yt = εyt. 

4. As discussed in Section 6.1 of the Supplementary Manual, the Johansen procedure consists 
of the matrix of vectors of the squared canonical correlations between the residuals of xt and Δxt–

1 regressed on lagged values of Δxt. The cointegrating vectors are the rows of the normalized 
eigenvectors.  

5. Johansen shows that this two-step procedure has the following properties: (i) if the rank of 
π is r and there are no I(2) components, the procedure picks out the true value of r with a high 
probability, (ii) a value of r that is too low is selected with a limiting probability of zero, and (iii) 
if there are I(2) components, the procedure will accept no I(2) components with a small 
probability. Jorgensen, Kongsted, and Rahbek (1996) show how to simultaneously select the 
values of r and s. As such, the characteristic roots are those of α⊥'Γb⊥ 

6. As summarized in Ericsson and MacKinnon (2002), there are other variants of the ECM 
test. For example, if a1 = 0, it follows that b1 = a1 and b2 = a1b should both equal zero. As such, 
it is also possible to test whether the restriction b1 = b2 = 0 is binding on (6.67). However, this 
type of test becomes more difficult when zt is actually a vector of weakly exogenous variables. 

 

  



 
 

 

SECTION 6.1:   
APPENDIX 6.1: Characteristic Roots, Stability, and Rank 

Characteristic Roots Defined 
Let A be an (n · n) square matrix with elements aij and let x be an (n · 1) vector. The scalar λ is 
called a characteristic root of A if 

 Ax = λx                                                             (A6.1) 
 Let I be an (n · n) identity matrix so that we can rewrite (A6.1) as 

(A – λI)x = 0                                                        (A6.2) 

 Since x is a vector containing values not identically equal to zero, (A6.2) requires that the 
rows of (A – λI) be linearly dependent. Equivalently, (A6.2) requires that the determinant  A – 
λI  = 0. Thus, we can find the characteristic root(s) of (A6.1) by finding the values of λ that 
satisfy 

 A – λI  = 0                                                         (A6.3) 

Example 1 
Let A be the matrix: 

0.5 0.2
0.2 0.5

A=
− 

 − 
 

so that 

0.5 0.2
0.2 0.5

| A λI |=  
λ

λ
− −

−
− −

 

 Solving for the value of λ such that A – λI  = 0 yields the quadratic equation: 

λ2 – λ + 0.21 = 0 

 The two values of λ which solve the equation are λ = 0.7 and λ = 0.3. Hence, 0.7 and 0.3 
are the two characteristic roots. 

Example 2 
Now change A such that each element in column 2 is twice the corresponding value in 

column 1. Specifically, 

0.5 1
0.2 0.4

A=  
 − − 

 

 Now, 



 
 

0.5 1
0.2 0.4

| A I |
λ

λ
λ

− 
− =  − − − 

 

 Again, there are two values of λ which solve A – λI  = 0. Solving the quadratic 
equation λ2 –0.1λ = 0 yields the two characteristic roots λ1 = 0 and λ2 = 0.1. 

Characteristic Equations 
Equation (A6.3) is called the characteristic equation of the square matrix A. Notice that the 
characteristic equation will be an nth-order polynomial in λ. The reason is that the determinant  
A – λI  = 0 contains the nth degree term λn resulting from the expression: 

(a11 – λ)(a22 – λ)(a33 – λ) … (ann – λ) 
 As such, the characteristic equation will be an nth-order polynomial of the form: 

λn + b1λn–1 + b2λn–2 + b3λn–3 + … + bn–1λ + bn = 0                            (A6.4) 

 From (A6.4) it immediately follows that an (n · n) square matrix will necessarily have n 
characteristic roots. As we saw in Chapter 1, some of the roots may be repeating and some may 
be complex. In practice, it is not necessary to actually calculate the values of the roots solving 
(A6.4). The necessary and sufficient conditions for all characteristic roots to lie within the unit 
circle are given in Chapter 1 and in the Supplementary Manual.  

 Notice that the term bn is of particular relevance because bn = (–1)n A . After all, bn is 
the only expression resulting from  A – λI  that is not multiplied by λ. In terms of (A6.4), the 
expressions λn and bn will have the same sign if n is even and opposite signs if n is odd. In 
Example 1, the characteristic equation is λ2 – λ + 0.21 = 0 so that b2 = 0.21. Since  A  = 0.21, 
it follows that b2 = (–1)2(0.21). Similarly, in Example 2, the characteristic equation is λ2 – 0.1λ = 
0, so that b2 = 0. Since it is also the case that  A  = 0, it also follows that b2 = (–1)2 A . In 
Example 3 below, we consider the case in which n = 3. 

Example 3 
Let A be such that 

0.5 0.2 0.2
| | 0.2 0.5 0.2

0.2 0.2 0.5
A I

λ
λ λ

λ

− 
 − = − 
 − 

 

 The characteristic equation is 

λ3 – 1.5λ2 + 0.63λ – 0.081 = 0 

 and the characteristic roots are 

λ1 = 0.9, λ2 = 0.3, and λ3 = 0.3 
 

 The determinant of A is 0.081 so that b3 = –0.081 = (–1)3 A . 



 
 

Determinants and Characteristic Roots 
The determinant of an (n ⋅ n) matrix is equal to the product of its characteristic roots, that is 

λ i

n

=i

  = | A |     ∏
1

                                                             (A6.5) 

where λ1, λ2, …, λn are the n characteristic roots of the (n ⋅ n) matrix A.   

 The proof of this important proposition is straightforward since the values λ1, λ2, …, λn 
solve (A6.4). Yet, from the algebra of polynomials, the product of the factors of (A6.4) is equal 
to (–1)nbn: 

1

( 1)
n

n
i n

i

bλ
=

= −∏  

 From the discussion above, we also know that (–1)nbn =  A . Hence (A6.5) must hold 
in that the product (λ1)(λ2) … (λn) = (–1)nbn =   A . 

Examples 1 to 3 Continued 

In Examples 1 and 2, the characteristic equation is quadratic of the form λ2 + b1λ + b2 = 0. 
To find the roots of this quadratic equation, we seek the factors λ1 and λ2 such that 

(λ – λ1)(λ – λ2) = 0 

or 

λ2 – (λλ1 + λλ2) + λ1λ2 = 0 
or 

λ2 – (λ1 + λ2)λ + λ1λ2 = 0 

 Clearly, the value of λ1λ2 must equal b2. To check the formulas in Example 1, recall that 
the characteristic equation is λ2 – λ + 0.21 = 0. In this problem, the value of b2 is 0.21, the 
product of the characteristic roots is λ1λ2 = (0.7)(0.3) = 0.21, and the determinant of A is (0.5)2 – 
(0.2)2 = 0.21. In Example 2, the characteristic equation is λ2 – 0.1λ = 0 so that b2 = 0. The 
product of the characteristic roots is λ1λ2 = (0.0)(0.1) = 0.0, and the determinant of A is (0.5)(0.4) 
– (0.2) = 0. 

 In Example 3, the characteristic equation is cubic: λ3 – 1.5λ2 + 0.63λ – 0.081 = 0. The 
value of b3 is –0.081, product of the characteristic roots is (0.9)(0.3)(0.3) = 0.081, and the 
determinant of A is 0.081.  

Characteristic Roots and Rank 
The rank of a square (n · n) matrix A is the number of linearly independent rows (columns) in the 
matrix. The notation rank(A) = r means that the rank of A is equal to r. The matrix A is said to be 
of full rank if rank(A) = n.  

 From the discussion above, it follows that the rank of A is equal to the number of its 
nonzero characteristic roots. Certainly, if all rows of A are linearly independent, the determinant 
of A is not equal to zero. From (A6.5) it follows that none of the characteristic roots can equal 



 
 

zero if  A  ≠ 0. At the other extreme, if rank(A) = 0, each element of A must equal zero. When 
rank(A) = 0, the characteristic equation degenerates into λn = 0 with the solutions λ1 = λ2 = … = 
λn = 0. Consider the intermediate cases wherein 0 < rank(A) = r < n. Since interchanging the 
various rows of a matrix does not alter the absolute value of its determinant, we can always 
rewrite  A – λI  = 0 such that the first r rows comprise the r linearly independent rows of A. 
The determinant of these first r rows will contain r characteristic roots. The other (n–r) roots will 
be zeroes. 

 In Example 2, rank(A) = 1 since each element in row 1 equals –2.5 times the 
corresponding element in row 2. For this case, A  = 0 and exactly one characteristic root is 
equal to zero. In the other two examples, A is of full rank and all characteristic roots differ from 
zero.  

Example 4 
Now consider a (3· 3) matrix A such that rank(A) = 1. Let 

 

0.5 0.2 0.2
| | 1 0.4 0.4

0.25 0.1 0.1
A I

λ
λ λ

λ

− 
 − = − 
 − − − − 

 

 The rank of A is unity since row 2 is twice row 1 and row 3 is –0.5 times row 1. The 
determinant of A equals zero and the characteristic equation is given by 

λ3 – 0.8λ2 = 0 

 The three characteristic roots are λ1 = 0.8, λ2 = 0, and λ3 = 0. 

Stability of a First-order VAR 
Let xt be the (n ⋅ 1) vector (x1t, x2t, …, xnt)' and consider the first-order VAR 

xt = A0 + A1xt–1 + εt                                                                            (A6.6) 

 

where   A0 = (n · 1) vector with elements ai0 

       A1  = (n · n) square matrix with elements aij 

           εt = (n · 1) vector of white-noise disturbances (ε1t, ε2t, … , εnt)' 
 

 To check the stability of the system, we need only examine the homogeneous equation: 

xt = A1xt–1                                                           (A6.7) 

 We can use the method of undetermined coefficients and for each xit posit a solution of 
the form: 

xit = ciλt                                                                                         (A6.8)  

where ci is an arbitrary constant. 



 
 

 If (A6.8) is to be a solution, it must satisfy all each of the n equations represented by 
(A6.7). Substituting xit = ciλt and xit–1 = ciλt–1 for each of the xit in (A6.7), we get  

                               c1λt = a11c1λt–1 + a12c2λt–1 + … + a1ncnλt–1 

                                     c2λt = a21c1λt–1 + a22c2λt–1 + … + a2ncnλt–1 

                                     c3λt = a31c1λt–1 + a32c2λt–1 + … + a3ncnλt–1 
                                      … 

cnλt = an1c1λt–1 + an2c2λt–1 + … + anncnλt–1 

 Now, divide each equation by λt–1 and collect terms to form 
  

c1(a11–
λ) 

+ c2a12 + 
c3a13 

… + cna1n = 0 

c1a21 + 
c2(a22–λ) 

+ 
c3a23 

… + cna2n = 0 

…     …    … … … 

c1an1 + c2an2 + 
c3an3 

… + 
cn(ann–λ) 

= 0 

 

 so that the following system of equations must be satisfied: 

11 12 13 1 1

21 22 23 2 2

1 2 3

( ) ... 0
( ) ... 0

... ... ... ... ... ... 0
... ( ) 0

n

n

n n n nn n

a a a a c
a a a a c

a a a a c

λ
λ

λ

−     
     −     =
     
     −        

 

 For a nontrivial solution to the system of equations, the following determinant must equal 
zero: 

11 12 13 1

21 22 23 2

1 2 3

( ) ...
( ) ...

0
... ... ... ... ...

... ( )

n

n

n n n nn

a a a a
a a a a

a a a a

λ
λ

λ

−
−

=

−

 

 The determinant will be an nth-order polynomial that is satisfied by n values of λ. Denote 
these n characteristic roots by λ1, λ2, … λn. Since each is a solution to the homogeneous 
equation, we know that the following linear combination of the homogeneous solutions is also a 
homogeneous solution: 

xit = d1λ1
t + d2λ2

t + … + dnλn
t 



 
 

 Note that each {xit} sequence will have the same roots. The necessary and sufficient 
condition for stability is that all characteristic roots lie within the unit circle. 

Cointegration and Rank  
The relationship between the rank of a matrix and its characteristic roots is critical in the 
Johansen procedure. Using the notation from Section 7, let  

xt = A1xt–1 + εt 
so that 

∆xt = (A1 – I)xt–1 + εt 

                                                            = pxt–1 + εt 

 If the rank of p is unity, all rows of p can be written as a scalar multiple of the first. Thus, 
each of the {∆xit} sequences can be written as 

∆xit = si (p11x1t–1 + p12x2t–1 + … + p1nxnt–1) + εit 

where  s1 = 1 and si = pij/p1j. 
 Hence, the linear combination:  p11x1t–1 + p12x2t–1 + … + p1nxnt–1  =  (∆xit – εit)/si is 

stationary since ∆xit and εit are both stationary. 

 The rank of p equals the number of cointegrating vectors. If rank(p) = r, there are r 
linearly independent combinations of the {xit} sequences that are stationary. If rank(p) = n, all 
variables are stationary. 

 The rank of p is equal to the number of its characteristic roots that differ from zero. Order 
the roots such that λ1 > λ2 > … > λn. The Johansen methodology allows you to determine the 
number of roots that are statistically different from zero. The relationship between A1 and p is 
such that if all characteristic roots of A1 are in the unit circle, p is of full rank.  

Calculating the Characteristic Roots in Johansen’s Method 
Although commercially available software packages can obtain the characteristic roots of p, 

you might be interested in programming the method yourself (or at least understanding the 
method). First select the most appropriate lag length p in for the VAR 

xt = A1xt–1 + … + Apxt–p + εt 

STEP 1: Estimate the VAR in first differences, that is, estimate  

∆xt = B1∆xt–1 + … + Bp–1∆xt–p+1 + e1t 

STEP 2: Regress xt–1 on the lagged changes; that is, estimate a VAR of the form 

xt–1 = C1∆xt–1 + … + Cp–1∆xt–p+1 + e2t 

STEP 3: Compute the squares of the canonical correlations between e1t and e2t. In an n-equation 
VAR, the n canonical correlations are the n values of λi. The λi are obtained as the 
solutions to 

1 '
22 12 11 12 0iS S S Sλ −− =  



 
 

where 1

1

( ) '
T

ii it it
t

S T e e−

=

= ∑  , 1
12 2 1

1

( ) '
T

t t
t

S T e e−

=

= ∑  

and e1t and e2t are the column vectors of residuals obtained in Steps 1 and 2.  

STEP 4: The maximum likelihood estimates of the cointegrating vectors are the n columns that 
are nontrivial solutions for  

 1 '
22 12 11 12i i iS S S Sλ ππ −=  

  



 
 

SECTION 6.2  
APPENDIX 6.2: INFERENCE ON A COINTEGRATING 

VECTOR 
The Johansen procedure allows you to test restrictions on one or more cointegrating vectors. 

However, it is very tempting to use the t-statistics on a coefficient of a cointegrating vector 
estimated by OLS in the Engle–Granger methodology. Nevertheless, you must avoid this 
temptation since the coefficients do not have asymptotic t-distributions except in one special 
circumstance. The problem is that the coefficients are super-consistent but the standard errors are 
not. Nevertheless, it is typical for a published study to report the coefficients of the cointegrating 
vector and the associated t-statistics or standard errors. For example, the cointegrating 
relationship between yt, zt, and wt in Section 5 was reported as (with t-statistics in parentheses) 

 yt = –0.0484 – 0.9273zt + 0.97687wt + eyt   
           (–0.575)  (–38.095)    (53.462) 

 

 However, {eyt} may be serially correlated and zt and wt may not be exogenous variables. 
As in a traditional regression with stationary variables, you need to correct for serial correlation 
and the problem of endogenous regressors. To illustrate the fully modified least squares 
procedure developed by Phillips and Hansen (1990), consider the simple two-variable example 

yt = b0 + b1zt + e1t 

     Δzt = e2t 

 The first equation is the cointegrating relationship and the second indicates that {zt} is the 
stochastic trend. The notation e1t and e2t is designed to illustrate the point that the residuals from 
both equations are stationary. However, they may be serially correlated and may be correlated 
with each other. As such, the second equation is actually quite general since ∆zt can be correlated 
with its own lags and with values of yt.  

 Clearly, the relationship between the two errors is crucial. We begin with the simple case 
wherein: 

2
1 1

2
2 2

0 0
. . . ,

0 0
t

t

e N i i d
e

σ
σ

     
=             

 

Case 1: In this circumstance, the errors are serially uncorrelated and the cross-correlations are 
zero. Hence, the OLS regression of yt on zt and a constant is such that the explanatory 
variable (i.e., zt) is independent of the error term e1t. As indicated in the text, the OLS 
estimates of b0 and b1 can be tested using the normal distribution. Hence, t-tests and F-
tests are appropriate. If the disturbances are not normally distributed, the asymptotic 
results are such that t-tests and F-tests are appropriate.  

Case 2: In general, e1t and e2t will be correlated with each other so that Ee1te2t ≠ 0. In order to 
conduct inference on the parameters of the cointegrating vector, it is necessary to correct 
for the endogeneity of zt. You do this by including leads and lags of {∆zt} in the 
cointegrating relationship. Hence, you estimate the equation  



 
 

 yt = b0 + b1zt + … + γ–1∆zt+1 + γ0∆zt + γ1Δzt–1 + … + e1t   

 In essence, you are controlling for innovations in zt since the equation is equivalent to 

yt = b0 + b1zt + … + γ–1e2t+1 + γ0e2t + γ1e2t–1 + … + e1t 
 Let var(e1t) be denoted by σe

2. If {e1t} is serially uncorrelated, you can form a t-statistic to 
determine whether the estimated value of b1 (i.e, 1̂β ) equals the hypothesized value b1 
using the t–statistic 

 1 1
ˆ( ) / et ββ  σ= −  

Case 3: In the most general case, Ee1te2t ≠ 0 and the residuals from the cointegrating vector (i.e., 
the estimated values of e1t) are likely to be serially correlated. Hence, you also need to 
modify the t–statistic so that you use the appropriate estimate of the variance of e1t. If the 
{e1t} series is serially correlated, you adjust the t-statistic using the following procedure:  

STEP 1: Estimate the equation for yt and obtain the estimated {e1t} series. Denote the t-statistic 
for the null hypothesis 1̂β  = b1 as t0.  

STEP 2: Estimate the {e1t} series as an AR(p) process to correct for autocorrelation. In 
particular, use the residuals from Step 1 to estimate the equation 

e1t = a1e1t–1 + … + ape1t–p + εt 

 Let σ2 denote the estimated variance of εt so that σ is the standard deviation. Construct 
the value λ as 

λ = σ/(1 – a1 – … – ap). 
STEP 3: Multiply t0 by σe/λ. The resulting value is the appropriate t-statistic for the null 

hypothesis
1öβ

 = b1. Compare the corrected t-statistic to that in a t-table. As you can see, 
the corrected t-statistic uses a more appropriate estimator for var(e1t). 

 Little is altered if we allow zt to be a vector of variables. However, a word of caution is in 
order. There are many possible sources of error in the three-step methodology outlined above. 
You could use too few or too many lags in Step 1. A similar problem arises in Step 2 because p 
is unknown. The Johansen procedure circumvents many of these problems in that all variables 
are treated as jointly endogenous and the VAR residuals are not serially correlated. Hence, you 
can conduct inference on the cointegrating vector(s) directly.  

 The procedure is not always as difficult as it sounds. As a practical matter, many 
researchers correct for serial correlation by adding lagged changes of ∆yt to the estimated 
equation. If the augmented equation eliminated the serial correlation, Steps 2 and 3 are 
unnecessary. The estimated equation has the form  

yt = b0 + b1zt + A1(L)∆yt–1 +… + γ–1∆zt+1 + γ0∆zt + γ1Δzt–1 + … + εt 

where A1(L) is a polynomial in the lag operator L and {εt} is serially uncorrelated.  

  



 
 

CHAPTER 7 

  



 
 



 
 

ENDNOTES TO CHAPTER 7 

1. Recall that the third-order Taylor series expansion of y = f(x) around the point x = x0 is y = 
f(x0) + f'(x0)(x – x0) + (1/2)f'' (x0)(x – x0)2 + (1/6)f'''(x0)(x – x0)3  where the symbol ' denotes 
differentiation. 

2. Hansen (1999) and Enders, Falk and Siklos (2007) consider the issue of inference on the 
coefficients (and the threshold τ) in a TAR model. Although the confidence intervals obtained 
from a conventional t-distribution are only approximations to the actual distributions, 
oftentimes the distributions obtained by bootstrapping do not perform better.  Note that the 
results here differ from those reported in the paper. 

3. Petrucelli and Woolford (1984) showed that a weaker set of sufficient conditions for the 
stationarity of {yt} is ρ1 < 0, ρ2 < 0, and (1 + ρ1)(1 + ρ2) < 1.  

4. The Wald test, LM test and Likelihood ratio tests are all asymptotically equivalent. Andrews 
(1993) develops the critical values using an LM test. In essence, the regressors from the null 
model plus the breaking terms are regressed on the residuals from the no break model. Instead 
of using a single supremum value, Andrews and Ploeberger (1994) develop an optimal test that 
uses an exponentially weighted average of the individual F-statistics.  

 

  



 
 

Section 7.1 Introduction to the Kalman Filter 
The Signal Extraction Problem 

Many researchers now use unobserved components models and the Kalman filter to estimate 
nonlinear processes. Before reading this section, you might want to reread some of the supplementary 
material to Chapter 4.  

Suppose that we observe a variable, , and want to decompose it into two orthogonal components. 
Let: 

  (1) 

where:  and  are the unobserved stochastic components. Although we do not observe the individual 
components, we know their distribution is such that ,  and 

 Hence, it follows that: 

 

 

Our aim is to from a prediction of , called , having observed the variable . Consider the 
prediction equation: 
  (2) 

Notice that the prediction equation is linear in that the prediction of  is a linear function of 
the observed variable . Of course, the predicted value of , called , is equal to 

. The selection of the coefficients  and  is not arbitrary in that we 
want to minimize the expected value of the squared prediction error. Hence, a formal statement 
of the problem is: 
  (3) 

Minimizing the expected prediction error with respect to  and  yields to two first order 
conditions: 

  (4) 

The rest is simply arithmetic. From the first equation, 

     (5) 

Since  and  it follows that  Now rewrite the second equation using 
the facts that  and  so that: 

 

Since the cross‐product term  we can write 

 

or recognizing that  and  we have 



 
 

 

If you solve for  you should find 

  (6) 

Thus, the optimal forecast rule is such that  is the percentage of the total variance of  that 
is due to . If, for example, , all of the variance of  is due to . In this case,  so 
that the forecast of  On the other hand, if , all of the variation in  is due to . As 
such,  and the optimal forecast of  is simply the current value of  If  and  are equally 
variable (so that ), the optimal forecast rule simply splits the observed value of  in half; 
one half is equal to the predicted value of  and the other is equal to the predicted value of . 

Exercises 

 Derive the optimal values of  and  assuming that the expected values of  and  
differ from zero. Specifically, let  and  

 Derive the optimal values of  and  under the assumption that  does not have a 
 effect on . Specifically, let the model for  be given by 

 

 Explain the difference between the regression model  and the 
unobserved components model. 

Signal Extraction for an Autoregressive Process 
  The problem of decomposing a series into two constituent components is more difficult 

when one of the processes is autoregressive. The reason is that the conditional mean of the 
autoregressive component will be changing over time. The optimal predictor of such a 
component will take these changes into account when forecasting. Consider the process: 

  (7) 

Time subscripts have been introduced since the conditional mean of , and hence the 
conditional mean of , is changing over time. Although we do not observe the ,  or  
directly, we know their distribution is such that ,  and 

. Note that the model of the previous section is the special case of an  process 
such that  and  

The goal is to minimize the squared prediction error of  conditional on the observation of . If you 
were not very careful, you might guess that it is optimal to select a forecasting rule of the form 

  (8) 

However, this would not be quite correct since the optimal value of  changes over time. 
Remember that  is an autoregressive process plus a noise term due to the presence of . If 
you observed that the  series exhibited no serial correlation, you might properly surmise that 



 
 

all of the shocks were due to the noise term . If you observed that the  series had 
autocorrelations equal to , you might infer that all of the shocks were due to . The 
point is that from an initial observation of the series, you would want to adjust the values of  
and  as additional values of  became available. 

As will be explained in more detail below, the optimal forecasting rule has the form: 
 

where  is a ‘weight’ that changes as new information becomes available. Suppose that at 
the end of period  we forecast the values of  and . Hence, we forecast these two values 
before observing the realized value of . Our conditional forecast of  is  and our 
conditional forecast of  is . These forecasts are conditional in the sense that they are 
made without knowledge of the realized value of . The nature of the formula is such that  will 
equal  if . Hence, if our conditional forecast of  turns out to be correct (so 
that ), we will not alter our forecast of of . However, if  we 
will modify our conditional forecast of by  percent of the discrepancy. The issue is to find the 
optimal value of  

Now we will change our notation to be consistent with that found in the literature. Let the 
symbol  denote the forecast of variable  once  is realized and  denote the forecast of 
variable  before  is realized. Hence: 

 denotes  

 denotes  

 denotes  

Just to ensure that you understand the notation, we can rewrite the equation for  as: 
  (9) 

Now we are in a position to select the optimal value of  so as to minimize the mean square 
prediction error ( ). Suppose we enter period  having observed the values  through  
and have made the forecast for  and . The optimization problem for period  is: 

  (10) 

Since , and , it follows that . We can rewrite the 
optimization problem as: 

 

Combining terms: 
 

Since  and  are uncorrelated, we can square the term in square brackets to obtain 
  (11) 



 
 

Optimizing with respect to  yields the first‐order condition: 
 

Let  denote the expression  so that the first‐order condition becomes: 

 

Solving for  yields: 

  (12) 

The result is only partially helpful. If we knew the value of , we 
would be able to calculate the optimal value of . Of course, there are instances in which  
is known. For example, in the example above, where there is no serial correlation, it should be 
clear that . Since  had a mean of zero and was not serially correlated, 

 and . The problem is a bit more complicated here since  evolves over 
time. 

 

Regrouping Equations 
  We know that  so that our forecasts of  will be linked over time. 

Specifically, since , it must be the case that: 

 

or using the notation  

  (13) 

Similarly, we can take the conditional variance of each side of  to obtain: 
 

or, if we use the notation  and  

  (14) 

Equations (13) and (14) are called the prediction equations. The other equations we need, called the 
updating equations, are given by 

  (15) 

  (16) 

and 
  (17) 



 
 

This last equation follows from substituting the formula for  into the formula for
. It should be clear from equation (11) that  can be written as 

 

or 
 

Now consider the formula for . Since 
, it follows that 

 

Collecting terms, it is easy to show that: 

  

Summary 
The basic Kalman filtering problem has the form 

  (18) 

Although  is observed, the values of and  cannot be directly observed by the 
researcher. However, it is known that the influence of  on  is  and that  and  are 
orthogonal to each other. The issue is to form the optimal predictors of  and  If the  series 
was observed, we could view (18) as a simple autoregression and use it to forecast  Once we 
forecasted  we could use this value to forecast Given that and  are unobserved, we need to 
use a different method. The Kalman filter allows us to decompose the  series into two constituent 
components. Given that we use the weight  from (15) equations (13) and (16) are the optimal predictors 
of  conditional on the information set at  (i.e.,  and conditional on the information set at  
(i.e.,  respectively. Equations (14) and (17) yield the mean square prediction errors. The properties of 
the forecasts are: 

The Conditional Expectation of  

Since  is unobserved, there are two different ways to think about predicting its realized 
value. First, the value  can be predicted, or ‘estimated’ using the information set available in 
period . We denoted this value as  Alternatively, the value of  can be predicted 
using the information set available in  We denoted this value as . Of course,  should be a 
better predictor of the actual value of  than  since it uses more information. It was shown 
that the optimal predictor of  is 

 

where  is determined in (15). Of course, any predictor will not be entirely accurate. In (17), we 
calculated that the  of  is  If you take the conditional expectation of the 



 
 

second equation in (18) with respect to the information set in  you should find 
 

As shown in (14), the  of this estimate is  

The Conditional Expectations of  

Although  can be observed in , it can be forecasted in . Simple take the conditional 
expectation of the first equation in (18) with respect to the information set in period  to obtain 

 

MSPE of  

The forecast of  from the perspective of period  will contain error. The mean square 
prediction error of  can be calculated from 

 

Since  and it follows that 

  

If you square the term in brackets and recognize that  is independent of  and you 
should find 

  

Thus, the  of  has two sources,  and . Note that  is the pure noise term 
that is unforecastable from period  the variance of this term is  The other source of 
forecast error variance is due to the fact that  itself needs to be predicted. The variance of this 
prediction error is  and the influence of  on  is  Hence, the influence of the prediction 
error of  on the prediction error variance of  is  

Example of Kalman Filtering 
  The Kalman filter consists of two prediction equations and three updating equations. 

Although we have derived the filter for a simple  process, more complicated functions all 
work in the same fashion. This section illustrates the use of the filter to predict the successive 
values of  generated from the same  discussed in the previous section. It is important to 
understand that Kalman filtering is a dynamic process. You begin with a specific information set 
and make predictions about the current state of the system. As such, in period , we observe  
and make a prediction about the value of . If you understand the notation, it should be clear 
that this prediction is . We then use the observed value of  to make a prediction about the 
value of ; again, if you understand the notation, this value of  since it is the forecast of  
given the observation of  Of course, once we enter period , we will be able to observe  and 
so update our forecast of –the updated forecast is . We continue to repeat this process until 



 
 

the end of the data set. 
To take the simplest case possible, first consider the case in which  From the first example, we 

already know that the optimal forecasting rule is to partition the observed values of according to the 
relative variance /( . We can now use the prediction and updating equations of the Kalman 
filter to achieve this same result. Since  the two prediction equations are: 

 

 

The updating equation equations are: 
 

 

 

If , it follows that: 

 
 

 

In period , your forecast is  and the variance of this forecast error is  Once 
 is observed, you can update your forecasts such that . The variance of this forecast 

error,  The fact that  follows fro the simple fact that the forecast error 
made after  is observed is smaller than that without the knowledge of . 

The situation is only slightly more complicated when  If we take the case in which  and 
further assume that  the prediction and updating equations become: 

Prediction:         

  

   Updating:         

  

Suppose that the first five occurrences of the  series are given by: 

 

Although we do not know the initial conditions of the system, suppose that we are at the very 
beginning of period  and have not, as yet, observed . If the system was just beginning–so that 

–it might be reasonable to set  and to assign an initial value of  As such, 



 
 

we have the initial conditions necessary to use the Kalman filter. Now, we can consider the 
iterations for the Kalman filter. Given these initial conditions, we use the prediction equations to 
obtain  and  In essence, we forecast a value of zero for the first realization  
and let variance of the forecast error be unity. Once we observe  we use the updating 
equations to form: 

 

 

 

We next use this information to form  and  From the prediction equations, we obtain: 

 

 

Once we observe , we use the updating equations to obtain: 
 

 

 

  Continuing in this fashion, we can obtain the complete set of forecasts for the series. 
The subsequent calculations are reported in Table 1. For each time period, , the simulated values 
of  and  are shown in the second through fourth columns, respectively, The fifth column 
shows Columns 6 and 7 show the values of  and  calculated using the 
prediction equations. If you read down the entries in the sixth column, you will see that 

 and  (Note that the entries in the table are rounded to three 
decimal places). Columns 8 through 10 show the values of  and  calculated using the 
updating equations. As shown in Figure 1, the Kalman filter forecasts  are reasonable. The 
solid line in the figure shows the values of  and the dashed line shows the predicted values. 

  



 
 

Table 1: Decomposition of the AR(1) Process 
t ηt vt εt yt εt|t-1 Pt|t-1 kt εt|t Pt|t 

   0     0 0 

1 1.341 0.716 0.716 2.058 0.000 1.000 0.500 1.029 0.500 

2 -0.347 0.487 0.845 0.498 0.514 1.125 0.529 0.506 0.529 

3 0.457 0.352 0.775 1.231 0.253 1.132 0.531 0.772 0.531 

4 -1.341 -0.643 -0.256 -1.597 0.386 1.133 0.531 -0.667 0.531 

5 0.483 1.899 1.771 2.254 -0.334 1.133 0.531 1.041 0.531 

6 -2.392 0.572 1.458 -0.934 0.520 1.133 0.531 -0.252 0.531 

7 -0.502 1.747 2.475 1.974 -0.126 1.133 0.531 0.989 0.531 

8 -0.473 -0.829 0.409 -0.064 0.495 1.133 0.531 0.198 0.531 

9 0.565 1.129 1.334 1.899 0.099 1.133 0.531 1.055 0.531 

10 -0.087 0.260 0.926 0.840 0.528 1.133 0.531 0.693 0.531 

11 1.115 0.324 0.787 1.902 0.347 1.133 0.531 1.173 0.531 

12 1.871 0.825 1.219 3.091 0.586 1.133 0.531 1.916 0.531 

13 0.126 0.219 0.829 0.955 0.958 1.133 0.531 0.956 0.531 

14 0.992 -2.509 -2.094 -1.102 0.478 1.133 0.531 -0.361 0.531 

15 -1.701 -0.368 -1.416 -3.117 -0.181 1.133 0.531 -1.740 0.531 

16 -0.749 0.805 0.097 -0.651 -0.870 1.133 0.531 -0.754 0.531 

17 -0.254 0.757 0.806 0.551 -0.377 1.133 0.531 0.116 0.531 

18 -1.106 -0.680 -0.277 -1.384 0.058 1.133 0.531 -0.708 0.531 

19 0.319 -1.623 -1.762 -1.444 -0.354 1.133 0.531 -0.933 0.531 

20 1.549 1.352 0.471 2.020 -0.466 1.133 0.531 0.854 0.531 

 

Notes: ηt and vt are uncorrelated i.i.d. normally distributed random variables such that 2
ησ and 

2
vσ  both equal unity. The values of εt were constructed as εt = 0.5εt-1 + vt and values of yt are εt + 

ηt. The  values of εt|t-1 and Pt|t-1 are constructed using the prediction equations and the values of  

kt, εt|t, and Pt|t are constructed using the updating equations. The twenty values of εt and εt|t 
are shown in Figure 1.  



 
 

 
Exercise 

The file Table1.xls is an Excel worksheet that contains the data shown in the first five 
columns of Table 1. However, the entries for  and  shown in columns 6 
through 10 of Table 1 are missing. Open the worksheet and construct the formulas for the 
prediction and updating equations in the appropriate columns. For example, the cell  contains 
the value  The formula " "  is entered in cell , the value of  will 
equal  Copy this formula to the other cells in column  in order to obtain the predicted values 
of  If you construct the formulas for the other cells properly, you should be able to 
completely reproduce Table 1. 

Convergence 
In order to use the Kalman filter, it is necessary to posit initial values for  and . In the 

example, we used  and  since it was assumed that we knew that  With 
such knowledge, the period zero forecast of  is obviously zero and, since there is no 
uncertainty about this forecast,  In general, the choice of the initial values to use in the 
filter may not be so obvious. What would happen if a different set of initial values for  and 

 had been chosen? If you are not sure of the answer, you can get a good hint by examining 
columns 6 and 10 of Table 1. Notice that the successive values of  and  both quickly 
converge to particular values;  converges to  and  converges to . With this 
hint, it should not surprise you to know that  and  would converge to the same numbers 
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regardless of the initial values used for the filter. To show this more formally, notice that we can 
collapse the system in order to obtain a difference equation in . Write as: 

  

For notational simplicity, let  denote , so that  denotes  as such, the 
difference equation becomes: 
  

Note that the slope of this nonlinear difference equation,  is less than 
one so that the system is convergent. The steady state solution is obtained by setting 

 Hence: 

 

If , we can write: 

   

The two solutions for  are: and  Since only the positive solution is 
feasible for the variance, we find:  From the first of the updating equations, we 
know that the solution for  Since 

 it follows that the convergent solution for is such that: 
 

 

  



 
 

Section 7.2 The Kalman Filter and State Space Models 
  In a simple dynamic model, the variable of interest, , can often be described by the 

 process: 
 

In the econometrics literature, the symbol  usually denotes the magnitude of the variable of 
interest at time period . Here, we will call  the state variable and the equation of motion 
describing  is the state equation. The reason for this terminology is that Kalman filtering 
problems were first used in engineering applications wherein the physical position of an object in 
motion is usually called the state of the object.1 As such, we can think of  as an equation of 
motion describing the current state of the system as a function of the state in the previous period. 
To be more general, we can allow the state variable to be a vector so that the state equation 
becomes: 

  (1) 

where:  is an  vector of state variables,  is an  vector of constant terms,  is 
an  matrix of coefficients, and  is an  vector of random error terms. Obviously, the 
univariate  model is a special case of (1) such that . Although the individual elements 
of –called –are assumed to be normally distributed and serially uncorrelated, it is generally 
that case that  

The key feature of state space models is that the elements of  are not observed directly. As 
in the last chapter, suppose we observe the variable, , and need to infer the value of the state 
. To be more general, we can let the relationship between  and  be given by: 
  (2) 

where:  is an  vector of observed variables,  is an  matrix of coefficients, and 
 is an  vector of error terms. Equation (2) is called the observation equation, or measurement 

equation, and  is called the observation error. The individual elements of the observation error–called 
–are assumed to be normally distributed and serially uncorrelated. We allow for the possibility that the 
 are contemporaneously correlated (so that  although we assume that all . 

Together, equations (1) and (2) form a state space model. An essential feature of any state space 
model is such that the state equation for  must be a first‐order stochastic difference equation. More 
general forms allow the coefficient vectors ,  and  to be time‐varying and allow the presence of 
exogenous variables. However, at this point, we work with the simple form of (1) and (2). 

If you understand the terminology, you should be able to properly identify the two equations 
used in the last section. Reconsider the equations:   

 yt = bxt + ηt   (3) 

 xt = ρxt-1 + vt   (4) 

                                                 
1 In some texts, the state equation is called the transition equation. 



 
 

 Clearly, (3) is the observation equation in that it expresses the observed variable, , as the sum 
of the state variable, , and a noise term. The second equation is the state equation in that the 
state variable, , is expressed as an  process. 

State Space Representations of Unobserved Components 
The state space model and the Kalman filter go hand‐in‐hand. To use the Kalman filter, it is 

necessary to be able to write the model in state space form. Since any state equation must be a 
first‐order stochastic difference equation, you might incorrectly jump to the conclusion that the 
Kalman filter is of limited use. However, it is often possible to rewrite a very complicated 
dynamic process as a vector  process. Once this  system has been obtained, it is 
possible to use the Kalman filter. 

Some unobserved components models have very natural state space representations. Clearly, 
the system of equations represented by (3) and (4) are already in state space form: (3) is the 
observation equation and (4) is the state equation. To use another example, suppose that  is 
composed of a trend plus a noise term. The variable  is observed but neither the trend nor the 
noise term are directly observable. Specifically, let 

  

Here,  consists of a trend component, , plus the pure random noise component, . Notice 
that the trend is a random walk plus drift. Again, the state space representation is trivial since the 
observation equation is nothing more than . The state equation expresses the 
evolution of  as an  process. Hence the state equation is Now take a 
more interesting case in which the intercept of the trend is time varying so that we can write the 
model as 

  

This model, called the local linear trend (LLT) model, is such that drift term of the trend is a 
random walk process. The observation equation is unchanged so that is can be written as 

. Note that the random walk plus noise model above is a special case of the LLT 
model such that  implying that One way to work with the model is to allow 
the state variables to be the trend, and the intercept,  However, it is more convenient to 
allow the state variables to be  and . As such, the equation describing the evolution of the 
state variables can be written as 

  

A vexing problem in economic analysis is to decompose an observed time series variable, 
such as real GDP, into its trend and cyclical component. The nature of the problem is that the 
trend and cyclical components are not observed. Nevertheless, it is of interest to know whether 
GDP is above or below trend. Consider a simple formulation of the problem such that 



 
 

  

where  is the level of real GDP in period ,  is the trend component, and  is the cyclical 
component. 

   Notice that the formulation is such that the trend is a random walk plus a drift term. As 
such, on average, the trend increases by  each period. Notice that a  shock represents a 
change in the intercept of the trend. There are good economic reasons to suppose that the cyclical 
component, , follows an  process. After all, the cyclical component is the deviation of 
GDP from its trend (i.e., ) that can be thought of as a recession if  is negative or as 
an expansion if  is positive. Since recessions and expansions are persistent, it makes sense to 
model the cyclical component as an  process. There are several state space representations for 
this model. The transition equation needs to adapted since we need to write that  process 
for  as an . The technique is to actually write  as one of the unobserved components 
in the system. 

 

Clearly, this is in the form of (1) such that  

 =  

and  the 3 x 3 coefficient matrix.  

   The observation equation relates the observed variable, , to the unobserved components. 
Hence, in matrix form, we can write the observation equation as 

 

Another important example involves two cointegrated variables. According to Engle and 
Granger (1987), two  variables are cointegrated if there exists a linear combination of the 
variables that is Another way to think about cointegrated variables is that they share a single 
stochastic trend. Suppose that it is possible to observe the variables  and  but that the trend 
component and the noise components are unobservable. To be specific, consider the process 

  

Here,  is composed of the stochastic trend component  plus a pure noise term . Notice 
that  shares the same trend as  although the noise components,  and  differ. The 
stochastic trend,  is assumed to be a pure random walk process. Clearly each of the variables is 
a nonstationary  process. However, they are cointegrated since they share the same trend–as 
such, it is possible to form a linear combination of the two variables that is stationary. Obviously, 



 
 

the difference between  and  is stationary since To write the system in 
state space form, note that the state variable is The state equation is nothing more than 

 

The measurement equation relates the observables to the unobservables. The measurement 
equation can be written as 

 

The State Space Representation of an  Process 
  For the examples in the last section, it seemed quite natural to express the model in state 

space form. However, in other circumstances, appropriately transforming the model can be 
tricky. The best way to learn is through practice. Towards this end, the remainder of this section 
consists of a number of examples. There is no particular reason apply a Kalman filter to an 

 equation since the variable of interest can be observed directly. However, transforming an 
 process into state space form is a good illustration of the technique. 

Example 1: The AR(2) model:  

 

Since  is identical to itself, it is always possible to write: 

 

As such, it is possible to define the matrices , and  such that: 

 

The important point is that we have transformed the  process into the state equation: 

 

The measurement equation is trivial in that it expresses . Since  is actually observed 
in an  model, the observation error is necessarily equal to zero. Hence, we can write the 
measurement equation: 

 

Example 2: The AR(3) model with an intercept 

 

Define the matrices and  such that: 

  (5) 



 
 

You should be able to verify that . If you read back the individual 
equations of this system, it should be clear that the first equation is 

 the second is , and the third is 
 The measurement equation is . At this point, you should be able to 

pick up the general pattern for any  process. The details are given in the next example. 
  

 

Example 3: The State Space Representation of an  Process 

 

First consider the MA(1) model xt = εt + b1εt-1.  

Define  such that: 

 

Hence, it is possible to write: 

  

  The observation equation is  Note that there are several state space 
representations of  processes. Another way to write the  model in state space form is 
to define ,  and  as follows: 

 

As such, it is possible to write the measurement equation as  and state 
equation as , or: 

 

Now consider the MA(2) model xt = εt + b1εt-1 + b2εt-2. 

The ‘trick’ here is to recognize that the moving average component  can 
be represented in the same way as an  process. Let:  so that the 
state equation becomes: 



 
 

  

Now, it is trivial to put the model in state space form. If the observation 
equation is: 

 

Estimation of State Space Models 
In almost every economic application, the full set of the model’s parameters are unknown 

and need to be estimated. Even if the coefficients of and measurement equations are known 
the variances of  and  are usually unknown. It turns out the it is possible to estimate the 
parameters of the model using maximum likelihood methods. Once the parameters are known, it 
is possible to write the model in state space form and apply the Kalman filter. As such, it is 
worthwhile to review the use of maximum likelihood methods for a model with unobserved 
components. To begin, suppose we have a series of  independently drawn observations for 

 The likelihood of each observation will depend on all of the parameters of the data 
generating process (such as the mean and variance). Obviously, if the parameters of the data 
generating process change, the likelihood of any particular realization will change as well. To 
keep the notation simple, let  denote the likelihood of  conditional on the value of the 
parameter vector  Since we are assuming that the observations are independent, the likelihood 
of the sample of observations  is the product of the likelihoods. If you understand the 
notation, it should be clear that this joint likelihood,  is 
  

Another way to think about the issue is to recognize that  is an indirect function of a 
different value of  would have lead to a different realization of  and a different value of 
We can let this dependence be denoted by  Once you recognize that different values of  
make some draws for the  sequence more likely than others, it is is natural to want to know 
the particular value of  that is the most probable one to have generated the observed realization 
of the  sequence. In other words, we want to know, conditional on , what is the most 
likely value of  that maximizes ? Formally, we want to seek the value of  that solves the 
following problem 
  (6) 

The details of maximum likelhood estimation should be familiar to anyone who has taken an 
introductort econometric class. However, the issue becomes more difficult with processes that 
are not independent. To take the simplest case, suppose that you want to estimate the values of 
and  in the  model . Although you could estimate a regression equation 
directly, the goal is to illustrate some of the issues involved with maximum likelihood 
estimation. If you are willing to assume that the individual values of the  series are 
independently drawn from a normal distribution, it is straightforward to obtain the estimates. 
Recall that the log of the likelihood of each value of  is 



 
 

  (7) 

Since the individual values of the  are independent of each other, the log likelihood of the 
joint realization of the entire series  is the sum of the individual log likelihoods. As 
such, the log of the joint likelihood  is 

  (8) 

The next step is to express  in terms of the observed values of the  series. The problem 
is that we began to observe the series in period   (i.e., the first observation is  and this value is 
conditional on the value in period . One way to tackle the issue is to impose the initial condition 

 so that 

  

Given that we impose , it follows that 

  

Notice that  can be viewed as a function of the values of the  sequence. We seek to 
determine the parameter set that makes the observed sequence the most likely. Now, to obtain 
the first‐order conditions for a maximum, find the values  and  that satisfy  and 

. The resultant values,  and are the maximum likelihood estimates of  and . 
The well‐known solution to the first‐order conditions is 

  (9) (10) 

Similar remarks hold for the maximum likelihood estimates for  and  in the  
model If the errors are normally distributed, the log likelihood of  is indentical 
to that in (7). However, it is not possible to estimate a linear regression equation to find the best 
fitting value of  because the individual values of the  series. As in the  example, it is 
necessary to express  in terms of the observable  sequence. Again, to make the 
transition from the  sequence to the  sequence it is necessary to impose an initial 
condition. Specifically, if we assume that  we can write the  sequence in terms of the 

 sequence as 



 
 

  (11) 

Note that (11) is a convergent sequence as long as the  process is invertible (i.e., as 
long as  If (11) is substituted into (8), we obtain the desired expression for  

  

There are several important points to note about this example. Unlike a regression equation, 
if you were to actually obtain the first‐order conditions for a maximum, you would not get 
analytic solutions for  and  Instead of being able to directly solve the first‐order equations 
(9) and (10), you would need to use numerical methods to find the solution. It is also important 
to note that it is necessary to initialize the system. In any dynamic model, it is necessary to have 
a set of initial conditions pertaining to the behavior of the variables in the model prior to the first 
observation. Finally, it is necessary to express the unobserved variables in terms of the 
obsevables. In models more sophisticated than an  or an , all of these issues can 
become quite difficult. 

The maximium likelihood estimation of a state space model a bit more difficult in that there 
are more parameters to estimate. To best understand the the method, suppose that we want to 
forecast  based on all information up to and including  In the last chapter, we showed 

 

As such, the one‐step ahead forecast error is 
 

In the last section, it was also shown that the variance of this error is 
 

If we are willing to maintain the assumption that the forecast error for normally distributed, 
the conditional distribution of  is such that 

 

so that the log likelihood of the forecast error is 

  

Given that , we can write this likelihood function as 



 
 

  

If we have a sequence of  such forecast errors, under the assumption that are all 
independent, we can write the joint log likelihood as 

   

In the case where  is observable, the forecast error variance of  (i.e.,  is zero and 
 would be nothing more than the actual value of As such, it would be 

straightforward to maximize the likelihood function to obtain estimates of  and . Clearly, 
this possibility is ruled out in the unobserved components framework so that another estimation 
strategy needs to be employed. Before proceeding, you should take a moment to try and devise 
an algorithm that uses the Kalman filter to enable the maximum likelihood estimation. If you 
understand the logic of the method, you should have reasoned as follows: 

1. Write the model in state space form and impose a set of initial conditons for  and  

2. Select an initial set of values of  and For this set of initial values and the initial 
conditions, use the Kalman filter to obtain the subsequent values of  and  Use 

these values to evaluate the likelihood function  
3. Select a new set of values for  and  and use the Kalman filter to create the resultant set 

of values for  and  Evaluate the likelihood function  

4. Continue to select values for  and  until the likelihood function in maximized. 

There are a number of numerical techniques that are able to efficiently select new values for 
 and  so that the maximized value of the log likelihood function can be reached quickly. 

For our purposes, the details of the search strategies used in the various algorithms are not 
important. What is important is to note that there is no simple way to obtain a closed form 
solution for the parameters of the model. 

Example: The Regression Model with Time Varying Parameters 
An important example is the case of a regression equation with time‐varying parameters. The 
usual regression set‐up is in the form such that the dependent variable,  is linearly related to an 
independent variable,  such that: . In the standard regression context, the 
coefficients and  are assumed to be constant. Instead, suppose that theses coefficients are 
allowed to evolve over time. In particular, suppose that each of the coefficients is an 
autoregressive process such that 

  

The state equation is straightforward to write once it is recognized that we can observe  and  
but the time‐varying coefficients the unobservables. The state equation describes the dynamic 



 
 

evolution of the unobserved state variables  and . Let the vector of state variables be 
Hence, the state equation is 

 

The measurement equations related the observables to the unobservables. Let 

 

Now that the model is in state space for, it can be estimated using the Kalman filter. 

  



 
 

STATISTICAL TABLES 
 

Table A     Empirical Cumulative Distribution of τ 
Significance level 

    0.01 0.025 0.05 0.10  

  The τ statistic: No Constant or Time Trend (a0 = a2 = 0)     

Sample Size T 

 25 −2.65 −2.26 −1.95 −1.60  
 50 −2.62 −2.25 −1.95 −1.61  
 100 −2.60 −2.24 −1.95 −1.61  
 250 −2.58 −2.24 −1.95 −1.62  
 300 −2.58 −2.23 −1.95 −1.62  
 ∞ −2.58 −2.23 −1.95 −1.62  
 
  The τµ statistic: Constant but No Time Trend (a2 = 0)  
 25 −3.75 −3.33 −2.99 −2.62  
 50 −3.59 −3.22 −2.93 −2.60  
 100 −3.50 −3.17 −2.90 −2.59  
 250 −3.45 −3.14 −2.88 −2.58  
 500 −3.44 −3.13 −2.87 −2.57  
 ∞ −3.42 −3.12 −2.86 −2.57  
 
 
   The ττ statistic: Constant + Time Trend 
 25 −4.38 −3.95 −3.60 −3.24  
 50 −4.15 −3.80 −3.50 −3.18  
 100 −4.05 −3.73 −3.45 −3.15  
 250 −3.99 −3.69 −3.43 −3.13  
 500 −3.97 −3.67 −3.42 −3.13  
 ∞ −3.96 −3.67 −3.41 −3.12  
 

___________________________________________________________________________________ 
The table is reproduced from Fuller (1996). 



 

 Table B     Empirical Distribution of Φ 
 
Significance level 0.10 0.05 0.025 0.01 
                                   ____________________________ 
Sample size T 
                              Φ1  
 25 4.12 5.18 6.30 7.88 
 50 3.94 4.86 5.80 7.06 
 100 3.86 4.71 5.57 6.70 
 250 3.81 4.63 5.45 6.52 
 500 3.79 4.61 5.41 6.47 
 ∞ 3.78 4.59 5.38 6.43 
 
                  Φ2 
 25 4.67 5.68 6.75 8.21 
 50 4.31 5.13 5.94 7.02 
 100 4.16 4.88 5.59 6.50 
 250 4.07 4.75 5.40 6.22 
 500 4.05 4.71 5.35 6.15 
 ∞ 4.03 4.68 5.31 6.09 
 
                     Φ3 
 25 5.91 7.24 8.65 10.61 
 50 5.61 6.73 7.81 9.31 
 100 5.47 6.49 7.44 8.73 
 250 5.39 6.34 7.25 8.43 
 500 5.36 6.30 7.20 8.34 
 ∞ 5.34 6.25 7.16 8.27 
      ____________________________________________ 
 



 

TABLE C: Critical Values for the Engle−Granger Cointegration Test 
 

T 1% 5% 10% 1% 5% 10% 
                              Two Variables                                               Three Variables 

50 −4.123 −3.461 −3.130 −4.592 −3.915 −3.578 
100 −4.008 −3.398 −3.087 −4.441 −3.828 −3.514 
200 −3.954 −3.368 −3.067 −4.368 −3.785 −3.483 
500 −3.921 −3.350 −3.054 −4.326 −3.760 −3.464 

       
                               Four Variables                                            Five Variables                  

50 −5.017 −4.324 −3.979 −5.416 −4.700 −4.348 
100 −4.827 −4.210 −3.895 −5.184 −4.557 −4.240 
200 −4.737 −4.154 −3.853 −5.070 −4.487 −4.186 
500 −4.684 −4.122 −3.828 −5.003 −4.446 −4.154 

 

The critical values are for cointegrating relations (with a constant in the cointegrating vector) 
estimated using the Engle−Granger methodology. 

Source: Critical values are interpolated using the response surface in MacKinnon (1991) 

  



 

Table D: Residual Based Cointegration Test with I(1) and I(2) Variables 
 
    Intercept Only       Linear Trend 

m1 T m2 = 1  m2 =2 m2 = 1  m2 =2  
  prob−value  prob−value prob−value  prob−value  
  0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.05 

0 50 
100 
250 

−4.18 
−4.09 
−4.02 

−3.51 
−3.42 
−3.38 

−4.70 
−4.51 
− 4.35 

−4.02 
−3.86 
−3.80 

−4.66 
−4.55 
−4.41 

−4.01 
−3.90 
−3.83 

−5.14 
−4.93 
−4.81 

−4.45 
−4.31 
−4.20 

1 50 
100 
250 

−4.65 
−4.51 
−4.39 

−3.93 
−3.89 
−3.80 

−5.15 
−4.85 
−4.71 

−4.40 
−4.26 
−4.18 

−5.11 
−4.85 
−4.73 

−4.42 
−4.26 
−4.19 

−5.62 
−5.23 
−5.11 

−4.89 
−4.62 
−4.50 

2 50 
100 
250 

−4.93 
−4.81 
−4.77 

−4.30 
−4.25 
−4.16 

−5.54 
−5.29 
−5.06 

−4.77 
−4.59 
−4.49 

−5.47 
−5.21 
−5.07 

−4.74 
−4.58 
−4.51 

−5.98 
−5.59 
−5.35 

−5.17 
−4.93 
−4.80 

3 50 
100 
250 

−5.38 
−5.20 
−5.05 

−4.71 
−4.56 
−4.48 

−5.76 
−5.58 
−5.44 

−5.08 
−4.92 
−4.83 

−5.89 
−5.52 
−5.38 

−5.13 
−4.91 
−4.78 

−6.23 
−5.97 
−5.69 

−5.48 
−5.25 
−5.07 

4 50 
100 
250 

−5.81 
−5.58 
−5.39 

−5.09 
−4.93 
−4.28 

−6.24 
−5.88 
−5.64 

−5.48 
−5.20 
−5.07 

−6.35 
−5.86 
−5.66 

−5.47 
−5.20 
−5.08 

−6.64 
−6.09 
−5.95 

−5.82 
−5.50 
−5.34 

 
Note: m1 is the number of I(1) variables and m2 is the number of I(2) variables on the right−hand 

side of the multicointegrating relationship.  
 
Source: The critical values for the intercept only case are from Haldrup (1994) and critical values 
for the linear trend are from Engsted, Gonzalo and Haldrup (1997). 



 

TABLE E: Empirical Distributions of the λmax and λtrace Statistics 
 

Significance level 
10%        5%       2.5%         1%       10%         5%       2.5%         1% 

 λ max  and λtrace  statistics without any deterministic regressors  

n−r  λmax     λtrace 
1   2.86   3.84   4.93   6.51    2.86   3.84   4.93   6.51   

2  9.52 11.44 13.27 15.69  10.47 12.53 14.43 16.31 

3 15.59 17.89 20.02 22.99  21.63 24.31 26.64 29.75 

4 21.56 23.80 26.14 28.82 36.58 39.89 42.30 45.58 

5 27.62 30.04 32.51 35.17 54.44 59.46 62.91 66.52 

 

 λ max  and λtrace  statistics with drift  

n−r  λmax     λtrace 
1   2.69   3.76   4.95   6.65    2.69   3.76   4.95   6.65   

2 12.07 14.07 16.05 18.63  13.33 15.41 17.52 20.04 

3 18.60 20.97 23.09 25.52  26.79 29.68 32.56 35.65 

4 24.73 27.07 28.98 32.24 43.95 47.21 50.35 54.46 

5 30.90 33.46 35.71 38.77 64.84 68.52 71.80 76.07 

 

 λmax  and  λ trace  statistics with a constant in the cointegrating vector 

   λmax             λtrace 
1   7.52   9.24 10.80 12.97   7.52   9.24 10.80 12.95 

2 13.75 15.67 17.63 20.20  17.85 19.96 22.05 24.60 

3 19.77 22.00 24.07 26.81 32.00 34.91 37.61 41.07 

4 25.56 28.14 30.32 33.24  49.65 53.12 56.06 60.16 

5 31.66 34.40 36.90 39.79 71.86 76.07 80.06 84.45 

 

Source: Osterwald−Lenum (1992). 



 

Table F: Critical Values for β1 = 0 in the Error−Correction Model 

 
k  Ta = 50 Ta = 100 Ta = 200 Ta = 500 
 No Intercept or Trend (d = 0) 

2 1% −3.309 −3.259 −3.235 −3.220 
 5% −2.625 −2.609 −2.602 −2.597 
 10% −2.273 −2.268 −2.266 −2.265 
      

3 1% −3.746 −3.683 −3.652 −3.633 
 5% −3.047 −3.026 −3.016 −3.009 
 10% −2.685 −2.680 −2.677 −2.675 
      

4 1% −4.088 −4.015 −3.979 −3.957 
 5% −3.370 −3.348 −3.337 −3.331 
 10% −3.000 −2.997 −2.995 −2.994 
 Intercept but no Trend (d = 1) 

2 1% −3.954 −3.874 −3.834 −3.811 
 5% −3.279 −3.247 −3.231 −3.221 
 10% −2.939 −2.924 −2.916 −2.911 
      

3 1% −4.268 −4.181 −4.138 −4.112 
 5% −3.571 −3.538 −3.522 −3.512 
 10% −3.216 −3.205 −3.199 −3.195 
      

4 1% −4.537 −4.446 −4.401 −4.374 
 5% −3.819 −3.789 −3.774 −3.765 
 10% −3.453 −3.447 −3.444 −3.442 
 Intercept and Trend (d = 2) 

2 1% −4.451 −4.350 −4.299 −4.269 
 5% −3.778 −3.733 −3.710 −3.696 
 10% −3.440 −3.416 −3.405 −3.398 
      

3 1% −4.712 −4.605 −4.552 −4.519 
 5% −4.014 −3.971 −3.949 −3.935 
 10% −3.662 −3.643 −3.634 −3.629 
      

4 1% −4.940 −4.831 −4.776 −4.743 
 5% −4.221 −4.182 −4.162 −4.150 
 10% −3.857 −3.846 −3.840 −3.837 

 
Note: Ta is the adjusted sample size equal to T – (2k – 1) – d where T is the usable sample size, d 
is the number of deterministic regressors, and k is the number of I(1) variables in the model. The 
critical values are calculated using equation (26) in Ericsson and MacKinnon (2002). 



 

Table G: Critical Values for Threshold Unit Roots 
 

Panel (a): Consistent Estimate of the Threshold Using the TAR Model 

 

   T             No Lagged Changes            One Lagged Change           Four Lagged Changes       
 

90% 95% 97.5 99% 90% 95% 97.5 99% 90% 95% 97.5 99% 
  50     5.15     6.19     7.25 8.64 5.55 6.62 7.66 9.10 5.49 6.55 7.59 9.00 
100     5.08     6.06     6.93 8.19 5.39 6.34 7.30 8.54 5.38 6.32 7.29 8.56 
250     5.11     6.03     6.88 8.04 5.26 6.12 6.99 8.14 5.36 6.29 7.15 8.35 

 
Panel (b): Consistent Estimate of the Threshold Using the M−TAR Model 

 
      No Lagged Changes            One Lagged Change           Four Lagged Changes       

 
  T       90% 95% 97.5 99% 90% 95% 97.5 99% 90% 95% 97.5 99% 
  50     5.02     6.05      7.09 8.59 4.98 6.07 7.15 8.56 4.93 5.96 7.01 8.48 
100     4.81     5.77      6.73 7.99 4.77 5.71 6.56 7.90 4.74 5.70 6.67 7.97 
250     4.70     5.64      6.51 7.64 4.64 5.54 6.40 7.56 4.64 5.54 6.39 7.61 

 

Panel (c): Known Threshold Value in the M−TAR Model 

            No Lagged Changes      One Lagged Change       Four Lagged Changes        
    T       90% 95% 97.5 99% 90% 95% 97.5 99% 90% 95% 97.5 99% 
  50 4.21 5.19 6.15 7.55 4.12 5.11 6.05 7.25 3.82 4.73 5.65 6.84 
100 4.11 5.04 5.96 7.10 4.08 4.97 5.87 7.06 3.81 4.72  5.63 6.83 
250 4.08 4.97 5.83 6.91 4.05 4.93 5.78 6.83 3.69 4.71 5.63 6.78 
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